libstdc++
|
00001 // SGI's rope class -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 00004 // 2012 Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 3, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // Under Section 7 of GPL version 3, you are granted additional 00018 // permissions described in the GCC Runtime Library Exception, version 00019 // 3.1, as published by the Free Software Foundation. 00020 00021 // You should have received a copy of the GNU General Public License and 00022 // a copy of the GCC Runtime Library Exception along with this program; 00023 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00024 // <http://www.gnu.org/licenses/>. 00025 00026 /* 00027 * Copyright (c) 1997 00028 * Silicon Graphics Computer Systems, Inc. 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Silicon Graphics makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 */ 00038 00039 /** @file ext/rope 00040 * This file is a GNU extension to the Standard C++ Library (possibly 00041 * containing extensions from the HP/SGI STL subset). 00042 */ 00043 00044 #ifndef _ROPE 00045 #define _ROPE 1 00046 00047 #pragma GCC system_header 00048 00049 #include <algorithm> 00050 #include <iosfwd> 00051 #include <bits/stl_construct.h> 00052 #include <bits/stl_uninitialized.h> 00053 #include <bits/stl_function.h> 00054 #include <bits/stl_numeric.h> 00055 #include <bits/allocator.h> 00056 #include <bits/gthr.h> 00057 #include <tr1/functional> 00058 00059 # ifdef __GC 00060 # define __GC_CONST const 00061 # else 00062 # define __GC_CONST // constant except for deallocation 00063 # endif 00064 00065 #include <ext/memory> // For uninitialized_copy_n 00066 00067 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) 00068 { 00069 namespace __detail 00070 { 00071 enum { _S_max_rope_depth = 45 }; 00072 enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function}; 00073 } // namespace __detail 00074 00075 using std::size_t; 00076 using std::ptrdiff_t; 00077 using std::allocator; 00078 using std::_Destroy; 00079 00080 _GLIBCXX_BEGIN_NAMESPACE_VERSION 00081 00082 // See libstdc++/36832. 00083 template<typename _ForwardIterator, typename _Allocator> 00084 void 00085 _Destroy_const(_ForwardIterator __first, 00086 _ForwardIterator __last, _Allocator __alloc) 00087 { 00088 for (; __first != __last; ++__first) 00089 __alloc.destroy(&*__first); 00090 } 00091 00092 template<typename _ForwardIterator, typename _Tp> 00093 inline void 00094 _Destroy_const(_ForwardIterator __first, 00095 _ForwardIterator __last, allocator<_Tp>) 00096 { _Destroy(__first, __last); } 00097 00098 // The _S_eos function is used for those functions that 00099 // convert to/from C-like strings to detect the end of the string. 00100 00101 // The end-of-C-string character. 00102 // This is what the draft standard says it should be. 00103 template <class _CharT> 00104 inline _CharT 00105 _S_eos(_CharT*) 00106 { return _CharT(); } 00107 00108 // Test for basic character types. 00109 // For basic character types leaves having a trailing eos. 00110 template <class _CharT> 00111 inline bool 00112 _S_is_basic_char_type(_CharT*) 00113 { return false; } 00114 00115 template <class _CharT> 00116 inline bool 00117 _S_is_one_byte_char_type(_CharT*) 00118 { return false; } 00119 00120 inline bool 00121 _S_is_basic_char_type(char*) 00122 { return true; } 00123 00124 inline bool 00125 _S_is_one_byte_char_type(char*) 00126 { return true; } 00127 00128 inline bool 00129 _S_is_basic_char_type(wchar_t*) 00130 { return true; } 00131 00132 // Store an eos iff _CharT is a basic character type. 00133 // Do not reference _S_eos if it isn't. 00134 template <class _CharT> 00135 inline void 00136 _S_cond_store_eos(_CharT&) { } 00137 00138 inline void 00139 _S_cond_store_eos(char& __c) 00140 { __c = 0; } 00141 00142 inline void 00143 _S_cond_store_eos(wchar_t& __c) 00144 { __c = 0; } 00145 00146 // char_producers are logically functions that generate a section of 00147 // a string. These can be converted to ropes. The resulting rope 00148 // invokes the char_producer on demand. This allows, for example, 00149 // files to be viewed as ropes without reading the entire file. 00150 template <class _CharT> 00151 class char_producer 00152 { 00153 public: 00154 virtual ~char_producer() { }; 00155 00156 virtual void 00157 operator()(size_t __start_pos, size_t __len, 00158 _CharT* __buffer) = 0; 00159 // Buffer should really be an arbitrary output iterator. 00160 // That way we could flatten directly into an ostream, etc. 00161 // This is thoroughly impossible, since iterator types don't 00162 // have runtime descriptions. 00163 }; 00164 00165 // Sequence buffers: 00166 // 00167 // Sequence must provide an append operation that appends an 00168 // array to the sequence. Sequence buffers are useful only if 00169 // appending an entire array is cheaper than appending element by element. 00170 // This is true for many string representations. 00171 // This should perhaps inherit from ostream<sequence::value_type> 00172 // and be implemented correspondingly, so that they can be used 00173 // for formatted. For the sake of portability, we don't do this yet. 00174 // 00175 // For now, sequence buffers behave as output iterators. But they also 00176 // behave a little like basic_ostringstream<sequence::value_type> and a 00177 // little like containers. 00178 00179 template<class _Sequence, size_t _Buf_sz = 100> 00180 class sequence_buffer 00181 : public std::iterator<std::output_iterator_tag, void, void, void, void> 00182 { 00183 public: 00184 typedef typename _Sequence::value_type value_type; 00185 protected: 00186 _Sequence* _M_prefix; 00187 value_type _M_buffer[_Buf_sz]; 00188 size_t _M_buf_count; 00189 public: 00190 00191 void 00192 flush() 00193 { 00194 _M_prefix->append(_M_buffer, _M_buffer + _M_buf_count); 00195 _M_buf_count = 0; 00196 } 00197 00198 ~sequence_buffer() 00199 { flush(); } 00200 00201 sequence_buffer() 00202 : _M_prefix(0), _M_buf_count(0) { } 00203 00204 sequence_buffer(const sequence_buffer& __x) 00205 { 00206 _M_prefix = __x._M_prefix; 00207 _M_buf_count = __x._M_buf_count; 00208 std::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer); 00209 } 00210 00211 sequence_buffer(sequence_buffer& __x) 00212 { 00213 __x.flush(); 00214 _M_prefix = __x._M_prefix; 00215 _M_buf_count = 0; 00216 } 00217 00218 sequence_buffer(_Sequence& __s) 00219 : _M_prefix(&__s), _M_buf_count(0) { } 00220 00221 sequence_buffer& 00222 operator=(sequence_buffer& __x) 00223 { 00224 __x.flush(); 00225 _M_prefix = __x._M_prefix; 00226 _M_buf_count = 0; 00227 return *this; 00228 } 00229 00230 sequence_buffer& 00231 operator=(const sequence_buffer& __x) 00232 { 00233 _M_prefix = __x._M_prefix; 00234 _M_buf_count = __x._M_buf_count; 00235 std::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer); 00236 return *this; 00237 } 00238 00239 void 00240 push_back(value_type __x) 00241 { 00242 if (_M_buf_count < _Buf_sz) 00243 { 00244 _M_buffer[_M_buf_count] = __x; 00245 ++_M_buf_count; 00246 } 00247 else 00248 { 00249 flush(); 00250 _M_buffer[0] = __x; 00251 _M_buf_count = 1; 00252 } 00253 } 00254 00255 void 00256 append(value_type* __s, size_t __len) 00257 { 00258 if (__len + _M_buf_count <= _Buf_sz) 00259 { 00260 size_t __i = _M_buf_count; 00261 for (size_t __j = 0; __j < __len; __i++, __j++) 00262 _M_buffer[__i] = __s[__j]; 00263 _M_buf_count += __len; 00264 } 00265 else if (0 == _M_buf_count) 00266 _M_prefix->append(__s, __s + __len); 00267 else 00268 { 00269 flush(); 00270 append(__s, __len); 00271 } 00272 } 00273 00274 sequence_buffer& 00275 write(value_type* __s, size_t __len) 00276 { 00277 append(__s, __len); 00278 return *this; 00279 } 00280 00281 sequence_buffer& 00282 put(value_type __x) 00283 { 00284 push_back(__x); 00285 return *this; 00286 } 00287 00288 sequence_buffer& 00289 operator=(const value_type& __rhs) 00290 { 00291 push_back(__rhs); 00292 return *this; 00293 } 00294 00295 sequence_buffer& 00296 operator*() 00297 { return *this; } 00298 00299 sequence_buffer& 00300 operator++() 00301 { return *this; } 00302 00303 sequence_buffer 00304 operator++(int) 00305 { return *this; } 00306 }; 00307 00308 // The following should be treated as private, at least for now. 00309 template<class _CharT> 00310 class _Rope_char_consumer 00311 { 00312 public: 00313 // If we had member templates, these should not be virtual. 00314 // For now we need to use run-time parametrization where 00315 // compile-time would do. Hence this should all be private 00316 // for now. 00317 // The symmetry with char_producer is accidental and temporary. 00318 virtual ~_Rope_char_consumer() { }; 00319 00320 virtual bool 00321 operator()(const _CharT* __buffer, size_t __len) = 0; 00322 }; 00323 00324 // First a lot of forward declarations. The standard seems to require 00325 // much stricter "declaration before use" than many of the implementations 00326 // that preceded it. 00327 template<class _CharT, class _Alloc = allocator<_CharT> > 00328 class rope; 00329 00330 template<class _CharT, class _Alloc> 00331 struct _Rope_RopeConcatenation; 00332 00333 template<class _CharT, class _Alloc> 00334 struct _Rope_RopeLeaf; 00335 00336 template<class _CharT, class _Alloc> 00337 struct _Rope_RopeFunction; 00338 00339 template<class _CharT, class _Alloc> 00340 struct _Rope_RopeSubstring; 00341 00342 template<class _CharT, class _Alloc> 00343 class _Rope_iterator; 00344 00345 template<class _CharT, class _Alloc> 00346 class _Rope_const_iterator; 00347 00348 template<class _CharT, class _Alloc> 00349 class _Rope_char_ref_proxy; 00350 00351 template<class _CharT, class _Alloc> 00352 class _Rope_char_ptr_proxy; 00353 00354 template<class _CharT, class _Alloc> 00355 bool 00356 operator==(const _Rope_char_ptr_proxy<_CharT, _Alloc>& __x, 00357 const _Rope_char_ptr_proxy<_CharT, _Alloc>& __y); 00358 00359 template<class _CharT, class _Alloc> 00360 _Rope_const_iterator<_CharT, _Alloc> 00361 operator-(const _Rope_const_iterator<_CharT, _Alloc>& __x, 00362 ptrdiff_t __n); 00363 00364 template<class _CharT, class _Alloc> 00365 _Rope_const_iterator<_CharT, _Alloc> 00366 operator+(const _Rope_const_iterator<_CharT, _Alloc>& __x, 00367 ptrdiff_t __n); 00368 00369 template<class _CharT, class _Alloc> 00370 _Rope_const_iterator<_CharT, _Alloc> 00371 operator+(ptrdiff_t __n, 00372 const _Rope_const_iterator<_CharT, _Alloc>& __x); 00373 00374 template<class _CharT, class _Alloc> 00375 bool 00376 operator==(const _Rope_const_iterator<_CharT, _Alloc>& __x, 00377 const _Rope_const_iterator<_CharT, _Alloc>& __y); 00378 00379 template<class _CharT, class _Alloc> 00380 bool 00381 operator<(const _Rope_const_iterator<_CharT, _Alloc>& __x, 00382 const _Rope_const_iterator<_CharT, _Alloc>& __y); 00383 00384 template<class _CharT, class _Alloc> 00385 ptrdiff_t 00386 operator-(const _Rope_const_iterator<_CharT, _Alloc>& __x, 00387 const _Rope_const_iterator<_CharT, _Alloc>& __y); 00388 00389 template<class _CharT, class _Alloc> 00390 _Rope_iterator<_CharT, _Alloc> 00391 operator-(const _Rope_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n); 00392 00393 template<class _CharT, class _Alloc> 00394 _Rope_iterator<_CharT, _Alloc> 00395 operator+(const _Rope_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n); 00396 00397 template<class _CharT, class _Alloc> 00398 _Rope_iterator<_CharT, _Alloc> 00399 operator+(ptrdiff_t __n, const _Rope_iterator<_CharT, _Alloc>& __x); 00400 00401 template<class _CharT, class _Alloc> 00402 bool 00403 operator==(const _Rope_iterator<_CharT, _Alloc>& __x, 00404 const _Rope_iterator<_CharT, _Alloc>& __y); 00405 00406 template<class _CharT, class _Alloc> 00407 bool 00408 operator<(const _Rope_iterator<_CharT, _Alloc>& __x, 00409 const _Rope_iterator<_CharT, _Alloc>& __y); 00410 00411 template<class _CharT, class _Alloc> 00412 ptrdiff_t 00413 operator-(const _Rope_iterator<_CharT, _Alloc>& __x, 00414 const _Rope_iterator<_CharT, _Alloc>& __y); 00415 00416 template<class _CharT, class _Alloc> 00417 rope<_CharT, _Alloc> 00418 operator+(const rope<_CharT, _Alloc>& __left, 00419 const rope<_CharT, _Alloc>& __right); 00420 00421 template<class _CharT, class _Alloc> 00422 rope<_CharT, _Alloc> 00423 operator+(const rope<_CharT, _Alloc>& __left, const _CharT* __right); 00424 00425 template<class _CharT, class _Alloc> 00426 rope<_CharT, _Alloc> 00427 operator+(const rope<_CharT, _Alloc>& __left, _CharT __right); 00428 00429 // Some helpers, so we can use power on ropes. 00430 // See below for why this isn't local to the implementation. 00431 00432 // This uses a nonstandard refcount convention. 00433 // The result has refcount 0. 00434 template<class _CharT, class _Alloc> 00435 struct _Rope_Concat_fn 00436 : public std::binary_function<rope<_CharT, _Alloc>, rope<_CharT, _Alloc>, 00437 rope<_CharT, _Alloc> > 00438 { 00439 rope<_CharT, _Alloc> 00440 operator()(const rope<_CharT, _Alloc>& __x, 00441 const rope<_CharT, _Alloc>& __y) 00442 { return __x + __y; } 00443 }; 00444 00445 template <class _CharT, class _Alloc> 00446 inline rope<_CharT, _Alloc> 00447 identity_element(_Rope_Concat_fn<_CharT, _Alloc>) 00448 { return rope<_CharT, _Alloc>(); } 00449 00450 // Class _Refcount_Base provides a type, _RC_t, a data member, 00451 // _M_ref_count, and member functions _M_incr and _M_decr, which perform 00452 // atomic preincrement/predecrement. The constructor initializes 00453 // _M_ref_count. 00454 struct _Refcount_Base 00455 { 00456 // The type _RC_t 00457 typedef size_t _RC_t; 00458 00459 // The data member _M_ref_count 00460 volatile _RC_t _M_ref_count; 00461 00462 // Constructor 00463 #ifdef __GTHREAD_MUTEX_INIT 00464 __gthread_mutex_t _M_ref_count_lock = __GTHREAD_MUTEX_INIT; 00465 #else 00466 __gthread_mutex_t _M_ref_count_lock; 00467 #endif 00468 00469 _Refcount_Base(_RC_t __n) : _M_ref_count(__n) 00470 { 00471 #ifndef __GTHREAD_MUTEX_INIT 00472 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION 00473 __GTHREAD_MUTEX_INIT_FUNCTION (&_M_ref_count_lock); 00474 #else 00475 #error __GTHREAD_MUTEX_INIT or __GTHREAD_MUTEX_INIT_FUNCTION should be defined by gthr.h abstraction layer, report problem to libstdc++@gcc.gnu.org. 00476 #endif 00477 #endif 00478 } 00479 00480 #ifndef __GTHREAD_MUTEX_INIT 00481 ~_Refcount_Base() 00482 { __gthread_mutex_destroy(&_M_ref_count_lock); } 00483 #endif 00484 00485 void 00486 _M_incr() 00487 { 00488 __gthread_mutex_lock(&_M_ref_count_lock); 00489 ++_M_ref_count; 00490 __gthread_mutex_unlock(&_M_ref_count_lock); 00491 } 00492 00493 _RC_t 00494 _M_decr() 00495 { 00496 __gthread_mutex_lock(&_M_ref_count_lock); 00497 volatile _RC_t __tmp = --_M_ref_count; 00498 __gthread_mutex_unlock(&_M_ref_count_lock); 00499 return __tmp; 00500 } 00501 }; 00502 00503 // 00504 // What follows should really be local to rope. Unfortunately, 00505 // that doesn't work, since it makes it impossible to define generic 00506 // equality on rope iterators. According to the draft standard, the 00507 // template parameters for such an equality operator cannot be inferred 00508 // from the occurrence of a member class as a parameter. 00509 // (SGI compilers in fact allow this, but the __result wouldn't be 00510 // portable.) 00511 // Similarly, some of the static member functions are member functions 00512 // only to avoid polluting the global namespace, and to circumvent 00513 // restrictions on type inference for template functions. 00514 // 00515 00516 // 00517 // The internal data structure for representing a rope. This is 00518 // private to the implementation. A rope is really just a pointer 00519 // to one of these. 00520 // 00521 // A few basic functions for manipulating this data structure 00522 // are members of _RopeRep. Most of the more complex algorithms 00523 // are implemented as rope members. 00524 // 00525 // Some of the static member functions of _RopeRep have identically 00526 // named functions in rope that simply invoke the _RopeRep versions. 00527 00528 #define __ROPE_DEFINE_ALLOCS(__a) \ 00529 __ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \ 00530 typedef _Rope_RopeConcatenation<_CharT,__a> __C; \ 00531 __ROPE_DEFINE_ALLOC(__C,_C) \ 00532 typedef _Rope_RopeLeaf<_CharT,__a> __L; \ 00533 __ROPE_DEFINE_ALLOC(__L,_L) \ 00534 typedef _Rope_RopeFunction<_CharT,__a> __F; \ 00535 __ROPE_DEFINE_ALLOC(__F,_F) \ 00536 typedef _Rope_RopeSubstring<_CharT,__a> __S; \ 00537 __ROPE_DEFINE_ALLOC(__S,_S) 00538 00539 // Internal rope nodes potentially store a copy of the allocator 00540 // instance used to allocate them. This is mostly redundant. 00541 // But the alternative would be to pass allocator instances around 00542 // in some form to nearly all internal functions, since any pointer 00543 // assignment may result in a zero reference count and thus require 00544 // deallocation. 00545 00546 #define __STATIC_IF_SGI_ALLOC /* not static */ 00547 00548 template <class _CharT, class _Alloc> 00549 struct _Rope_rep_base 00550 : public _Alloc 00551 { 00552 typedef _Alloc allocator_type; 00553 00554 allocator_type 00555 get_allocator() const 00556 { return *static_cast<const _Alloc*>(this); } 00557 00558 allocator_type& 00559 _M_get_allocator() 00560 { return *static_cast<_Alloc*>(this); } 00561 00562 const allocator_type& 00563 _M_get_allocator() const 00564 { return *static_cast<const _Alloc*>(this); } 00565 00566 _Rope_rep_base(size_t __size, const allocator_type&) 00567 : _M_size(__size) { } 00568 00569 size_t _M_size; 00570 00571 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \ 00572 typedef typename \ 00573 _Alloc::template rebind<_Tp>::other __name##Alloc; \ 00574 static _Tp* __name##_allocate(size_t __n) \ 00575 { return __name##Alloc().allocate(__n); } \ 00576 static void __name##_deallocate(_Tp *__p, size_t __n) \ 00577 { __name##Alloc().deallocate(__p, __n); } 00578 __ROPE_DEFINE_ALLOCS(_Alloc) 00579 # undef __ROPE_DEFINE_ALLOC 00580 }; 00581 00582 template<class _CharT, class _Alloc> 00583 struct _Rope_RopeRep 00584 : public _Rope_rep_base<_CharT, _Alloc> 00585 # ifndef __GC 00586 , _Refcount_Base 00587 # endif 00588 { 00589 public: 00590 __detail::_Tag _M_tag:8; 00591 bool _M_is_balanced:8; 00592 unsigned char _M_depth; 00593 __GC_CONST _CharT* _M_c_string; 00594 #ifdef __GTHREAD_MUTEX_INIT 00595 __gthread_mutex_t _M_c_string_lock = __GTHREAD_MUTEX_INIT; 00596 #else 00597 __gthread_mutex_t _M_c_string_lock; 00598 #endif 00599 /* Flattened version of string, if needed. */ 00600 /* typically 0. */ 00601 /* If it's not 0, then the memory is owned */ 00602 /* by this node. */ 00603 /* In the case of a leaf, this may point to */ 00604 /* the same memory as the data field. */ 00605 typedef typename _Rope_rep_base<_CharT, _Alloc>::allocator_type 00606 allocator_type; 00607 00608 using _Rope_rep_base<_CharT, _Alloc>::get_allocator; 00609 using _Rope_rep_base<_CharT, _Alloc>::_M_get_allocator; 00610 00611 _Rope_RopeRep(__detail::_Tag __t, int __d, bool __b, size_t __size, 00612 const allocator_type& __a) 00613 : _Rope_rep_base<_CharT, _Alloc>(__size, __a), 00614 #ifndef __GC 00615 _Refcount_Base(1), 00616 #endif 00617 _M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0) 00618 #ifdef __GTHREAD_MUTEX_INIT 00619 { } 00620 #else 00621 { __GTHREAD_MUTEX_INIT_FUNCTION (&_M_c_string_lock); } 00622 ~_Rope_RopeRep() 00623 { __gthread_mutex_destroy (&_M_c_string_lock); } 00624 #endif 00625 #ifdef __GC 00626 void 00627 _M_incr () { } 00628 #endif 00629 static void 00630 _S_free_string(__GC_CONST _CharT*, size_t __len, 00631 allocator_type& __a); 00632 #define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a); 00633 // Deallocate data section of a leaf. 00634 // This shouldn't be a member function. 00635 // But its hard to do anything else at the 00636 // moment, because it's templatized w.r.t. 00637 // an allocator. 00638 // Does nothing if __GC is defined. 00639 #ifndef __GC 00640 void _M_free_c_string(); 00641 void _M_free_tree(); 00642 // Deallocate t. Assumes t is not 0. 00643 void 00644 _M_unref_nonnil() 00645 { 00646 if (0 == _M_decr()) 00647 _M_free_tree(); 00648 } 00649 00650 void 00651 _M_ref_nonnil() 00652 { _M_incr(); } 00653 00654 static void 00655 _S_unref(_Rope_RopeRep* __t) 00656 { 00657 if (0 != __t) 00658 __t->_M_unref_nonnil(); 00659 } 00660 00661 static void 00662 _S_ref(_Rope_RopeRep* __t) 00663 { 00664 if (0 != __t) 00665 __t->_M_incr(); 00666 } 00667 00668 static void 00669 _S_free_if_unref(_Rope_RopeRep* __t) 00670 { 00671 if (0 != __t && 0 == __t->_M_ref_count) 00672 __t->_M_free_tree(); 00673 } 00674 # else /* __GC */ 00675 void _M_unref_nonnil() { } 00676 void _M_ref_nonnil() { } 00677 static void _S_unref(_Rope_RopeRep*) { } 00678 static void _S_ref(_Rope_RopeRep*) { } 00679 static void _S_free_if_unref(_Rope_RopeRep*) { } 00680 # endif 00681 protected: 00682 _Rope_RopeRep& 00683 operator=(const _Rope_RopeRep&); 00684 00685 _Rope_RopeRep(const _Rope_RopeRep&); 00686 }; 00687 00688 template<class _CharT, class _Alloc> 00689 struct _Rope_RopeLeaf 00690 : public _Rope_RopeRep<_CharT, _Alloc> 00691 { 00692 public: 00693 // Apparently needed by VC++ 00694 // The data fields of leaves are allocated with some 00695 // extra space, to accommodate future growth and for basic 00696 // character types, to hold a trailing eos character. 00697 enum { _S_alloc_granularity = 8 }; 00698 00699 static size_t 00700 _S_rounded_up_size(size_t __n) 00701 { 00702 size_t __size_with_eos; 00703 00704 if (_S_is_basic_char_type((_CharT*)0)) 00705 __size_with_eos = __n + 1; 00706 else 00707 __size_with_eos = __n; 00708 #ifdef __GC 00709 return __size_with_eos; 00710 #else 00711 // Allow slop for in-place expansion. 00712 return ((__size_with_eos + size_t(_S_alloc_granularity) - 1) 00713 &~ (size_t(_S_alloc_granularity) - 1)); 00714 #endif 00715 } 00716 __GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */ 00717 /* The allocated size is */ 00718 /* _S_rounded_up_size(size), except */ 00719 /* in the GC case, in which it */ 00720 /* doesn't matter. */ 00721 typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type 00722 allocator_type; 00723 00724 _Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size, 00725 const allocator_type& __a) 00726 : _Rope_RopeRep<_CharT, _Alloc>(__detail::_S_leaf, 0, true, 00727 __size, __a), _M_data(__d) 00728 { 00729 if (_S_is_basic_char_type((_CharT *)0)) 00730 { 00731 // already eos terminated. 00732 this->_M_c_string = __d; 00733 } 00734 } 00735 // The constructor assumes that d has been allocated with 00736 // the proper allocator and the properly padded size. 00737 // In contrast, the destructor deallocates the data: 00738 #ifndef __GC 00739 ~_Rope_RopeLeaf() throw() 00740 { 00741 if (_M_data != this->_M_c_string) 00742 this->_M_free_c_string(); 00743 00744 this->__STL_FREE_STRING(_M_data, this->_M_size, this->_M_get_allocator()); 00745 } 00746 #endif 00747 protected: 00748 _Rope_RopeLeaf& 00749 operator=(const _Rope_RopeLeaf&); 00750 00751 _Rope_RopeLeaf(const _Rope_RopeLeaf&); 00752 }; 00753 00754 template<class _CharT, class _Alloc> 00755 struct _Rope_RopeConcatenation 00756 : public _Rope_RopeRep<_CharT, _Alloc> 00757 { 00758 public: 00759 _Rope_RopeRep<_CharT, _Alloc>* _M_left; 00760 _Rope_RopeRep<_CharT, _Alloc>* _M_right; 00761 00762 typedef typename _Rope_rep_base<_CharT, _Alloc>::allocator_type 00763 allocator_type; 00764 00765 _Rope_RopeConcatenation(_Rope_RopeRep<_CharT, _Alloc>* __l, 00766 _Rope_RopeRep<_CharT, _Alloc>* __r, 00767 const allocator_type& __a) 00768 : _Rope_RopeRep<_CharT, _Alloc>(__detail::_S_concat, 00769 std::max(__l->_M_depth, 00770 __r->_M_depth) + 1, 00771 false, 00772 __l->_M_size + __r->_M_size, __a), 00773 _M_left(__l), _M_right(__r) 00774 { } 00775 #ifndef __GC 00776 ~_Rope_RopeConcatenation() throw() 00777 { 00778 this->_M_free_c_string(); 00779 _M_left->_M_unref_nonnil(); 00780 _M_right->_M_unref_nonnil(); 00781 } 00782 #endif 00783 protected: 00784 _Rope_RopeConcatenation& 00785 operator=(const _Rope_RopeConcatenation&); 00786 00787 _Rope_RopeConcatenation(const _Rope_RopeConcatenation&); 00788 }; 00789 00790 template<class _CharT, class _Alloc> 00791 struct _Rope_RopeFunction 00792 : public _Rope_RopeRep<_CharT, _Alloc> 00793 { 00794 public: 00795 char_producer<_CharT>* _M_fn; 00796 #ifndef __GC 00797 bool _M_delete_when_done; // Char_producer is owned by the 00798 // rope and should be explicitly 00799 // deleted when the rope becomes 00800 // inaccessible. 00801 #else 00802 // In the GC case, we either register the rope for 00803 // finalization, or not. Thus the field is unnecessary; 00804 // the information is stored in the collector data structures. 00805 // We do need a finalization procedure to be invoked by the 00806 // collector. 00807 static void 00808 _S_fn_finalization_proc(void * __tree, void *) 00809 { delete ((_Rope_RopeFunction *)__tree) -> _M_fn; } 00810 #endif 00811 typedef typename _Rope_rep_base<_CharT, _Alloc>::allocator_type 00812 allocator_type; 00813 00814 _Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size, 00815 bool __d, const allocator_type& __a) 00816 : _Rope_RopeRep<_CharT, _Alloc>(__detail::_S_function, 0, true, __size, __a) 00817 , _M_fn(__f) 00818 #ifndef __GC 00819 , _M_delete_when_done(__d) 00820 #endif 00821 { 00822 #ifdef __GC 00823 if (__d) 00824 { 00825 GC_REGISTER_FINALIZER(this, _Rope_RopeFunction:: 00826 _S_fn_finalization_proc, 0, 0, 0); 00827 } 00828 #endif 00829 } 00830 #ifndef __GC 00831 ~_Rope_RopeFunction() throw() 00832 { 00833 this->_M_free_c_string(); 00834 if (_M_delete_when_done) 00835 delete _M_fn; 00836 } 00837 # endif 00838 protected: 00839 _Rope_RopeFunction& 00840 operator=(const _Rope_RopeFunction&); 00841 00842 _Rope_RopeFunction(const _Rope_RopeFunction&); 00843 }; 00844 // Substring results are usually represented using just 00845 // concatenation nodes. But in the case of very long flat ropes 00846 // or ropes with a functional representation that isn't practical. 00847 // In that case, we represent the __result as a special case of 00848 // RopeFunction, whose char_producer points back to the rope itself. 00849 // In all cases except repeated substring operations and 00850 // deallocation, we treat the __result as a RopeFunction. 00851 template<class _CharT, class _Alloc> 00852 struct _Rope_RopeSubstring 00853 : public _Rope_RopeFunction<_CharT, _Alloc>, 00854 public char_producer<_CharT> 00855 { 00856 public: 00857 // XXX this whole class should be rewritten. 00858 _Rope_RopeRep<_CharT,_Alloc>* _M_base; // not 0 00859 size_t _M_start; 00860 00861 virtual void 00862 operator()(size_t __start_pos, size_t __req_len, 00863 _CharT* __buffer) 00864 { 00865 switch(_M_base->_M_tag) 00866 { 00867 case __detail::_S_function: 00868 case __detail::_S_substringfn: 00869 { 00870 char_producer<_CharT>* __fn = 00871 ((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn; 00872 (*__fn)(__start_pos + _M_start, __req_len, __buffer); 00873 } 00874 break; 00875 case __detail::_S_leaf: 00876 { 00877 __GC_CONST _CharT* __s = 00878 ((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data; 00879 uninitialized_copy_n(__s + __start_pos + _M_start, __req_len, 00880 __buffer); 00881 } 00882 break; 00883 default: 00884 break; 00885 } 00886 } 00887 00888 typedef typename _Rope_rep_base<_CharT, _Alloc>::allocator_type 00889 allocator_type; 00890 00891 _Rope_RopeSubstring(_Rope_RopeRep<_CharT, _Alloc>* __b, size_t __s, 00892 size_t __l, const allocator_type& __a) 00893 : _Rope_RopeFunction<_CharT, _Alloc>(this, __l, false, __a), 00894 char_producer<_CharT>(), _M_base(__b), _M_start(__s) 00895 { 00896 #ifndef __GC 00897 _M_base->_M_ref_nonnil(); 00898 #endif 00899 this->_M_tag = __detail::_S_substringfn; 00900 } 00901 virtual ~_Rope_RopeSubstring() throw() 00902 { 00903 #ifndef __GC 00904 _M_base->_M_unref_nonnil(); 00905 // _M_free_c_string(); -- done by parent class 00906 #endif 00907 } 00908 }; 00909 00910 // Self-destructing pointers to Rope_rep. 00911 // These are not conventional smart pointers. Their 00912 // only purpose in life is to ensure that unref is called 00913 // on the pointer either at normal exit or if an exception 00914 // is raised. It is the caller's responsibility to 00915 // adjust reference counts when these pointers are initialized 00916 // or assigned to. (This convention significantly reduces 00917 // the number of potentially expensive reference count 00918 // updates.) 00919 #ifndef __GC 00920 template<class _CharT, class _Alloc> 00921 struct _Rope_self_destruct_ptr 00922 { 00923 _Rope_RopeRep<_CharT, _Alloc>* _M_ptr; 00924 00925 ~_Rope_self_destruct_ptr() 00926 { _Rope_RopeRep<_CharT, _Alloc>::_S_unref(_M_ptr); } 00927 #ifdef __EXCEPTIONS 00928 _Rope_self_destruct_ptr() : _M_ptr(0) { }; 00929 #else 00930 _Rope_self_destruct_ptr() { }; 00931 #endif 00932 _Rope_self_destruct_ptr(_Rope_RopeRep<_CharT, _Alloc>* __p) 00933 : _M_ptr(__p) { } 00934 00935 _Rope_RopeRep<_CharT, _Alloc>& 00936 operator*() 00937 { return *_M_ptr; } 00938 00939 _Rope_RopeRep<_CharT, _Alloc>* 00940 operator->() 00941 { return _M_ptr; } 00942 00943 operator _Rope_RopeRep<_CharT, _Alloc>*() 00944 { return _M_ptr; } 00945 00946 _Rope_self_destruct_ptr& 00947 operator=(_Rope_RopeRep<_CharT, _Alloc>* __x) 00948 { _M_ptr = __x; return *this; } 00949 }; 00950 #endif 00951 00952 // Dereferencing a nonconst iterator has to return something 00953 // that behaves almost like a reference. It's not possible to 00954 // return an actual reference since assignment requires extra 00955 // work. And we would get into the same problems as with the 00956 // CD2 version of basic_string. 00957 template<class _CharT, class _Alloc> 00958 class _Rope_char_ref_proxy 00959 { 00960 friend class rope<_CharT, _Alloc>; 00961 friend class _Rope_iterator<_CharT, _Alloc>; 00962 friend class _Rope_char_ptr_proxy<_CharT, _Alloc>; 00963 #ifdef __GC 00964 typedef _Rope_RopeRep<_CharT, _Alloc>* _Self_destruct_ptr; 00965 #else 00966 typedef _Rope_self_destruct_ptr<_CharT, _Alloc> _Self_destruct_ptr; 00967 #endif 00968 typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep; 00969 typedef rope<_CharT, _Alloc> _My_rope; 00970 size_t _M_pos; 00971 _CharT _M_current; 00972 bool _M_current_valid; 00973 _My_rope* _M_root; // The whole rope. 00974 public: 00975 _Rope_char_ref_proxy(_My_rope* __r, size_t __p) 00976 : _M_pos(__p), _M_current(), _M_current_valid(false), _M_root(__r) { } 00977 00978 _Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x) 00979 : _M_pos(__x._M_pos), _M_current(__x._M_current), 00980 _M_current_valid(false), _M_root(__x._M_root) { } 00981 00982 // Don't preserve cache if the reference can outlive the 00983 // expression. We claim that's not possible without calling 00984 // a copy constructor or generating reference to a proxy 00985 // reference. We declare the latter to have undefined semantics. 00986 _Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c) 00987 : _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) { } 00988 00989 inline operator _CharT () const; 00990 00991 _Rope_char_ref_proxy& 00992 operator=(_CharT __c); 00993 00994 _Rope_char_ptr_proxy<_CharT, _Alloc> operator&() const; 00995 00996 _Rope_char_ref_proxy& 00997 operator=(const _Rope_char_ref_proxy& __c) 00998 { return operator=((_CharT)__c); } 00999 }; 01000 01001 template<class _CharT, class __Alloc> 01002 inline void 01003 swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, 01004 _Rope_char_ref_proxy <_CharT, __Alloc > __b) 01005 { 01006 _CharT __tmp = __a; 01007 __a = __b; 01008 __b = __tmp; 01009 } 01010 01011 template<class _CharT, class _Alloc> 01012 class _Rope_char_ptr_proxy 01013 { 01014 // XXX this class should be rewritten. 01015 friend class _Rope_char_ref_proxy<_CharT, _Alloc>; 01016 size_t _M_pos; 01017 rope<_CharT,_Alloc>* _M_root; // The whole rope. 01018 public: 01019 _Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x) 01020 : _M_pos(__x._M_pos), _M_root(__x._M_root) { } 01021 01022 _Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x) 01023 : _M_pos(__x._M_pos), _M_root(__x._M_root) { } 01024 01025 _Rope_char_ptr_proxy() { } 01026 01027 _Rope_char_ptr_proxy(_CharT* __x) 01028 : _M_root(0), _M_pos(0) { } 01029 01030 _Rope_char_ptr_proxy& 01031 operator=(const _Rope_char_ptr_proxy& __x) 01032 { 01033 _M_pos = __x._M_pos; 01034 _M_root = __x._M_root; 01035 return *this; 01036 } 01037 01038 template<class _CharT2, class _Alloc2> 01039 friend bool 01040 operator==(const _Rope_char_ptr_proxy<_CharT2, _Alloc2>& __x, 01041 const _Rope_char_ptr_proxy<_CharT2, _Alloc2>& __y); 01042 01043 _Rope_char_ref_proxy<_CharT, _Alloc> operator*() const 01044 { return _Rope_char_ref_proxy<_CharT, _Alloc>(_M_root, _M_pos); } 01045 }; 01046 01047 // Rope iterators: 01048 // Unlike in the C version, we cache only part of the stack 01049 // for rope iterators, since they must be efficiently copyable. 01050 // When we run out of cache, we have to reconstruct the iterator 01051 // value. 01052 // Pointers from iterators are not included in reference counts. 01053 // Iterators are assumed to be thread private. Ropes can 01054 // be shared. 01055 01056 template<class _CharT, class _Alloc> 01057 class _Rope_iterator_base 01058 : public std::iterator<std::random_access_iterator_tag, _CharT> 01059 { 01060 friend class rope<_CharT, _Alloc>; 01061 public: 01062 typedef _Alloc _allocator_type; // used in _Rope_rotate, VC++ workaround 01063 typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep; 01064 // Borland doesn't want this to be protected. 01065 protected: 01066 enum { _S_path_cache_len = 4 }; // Must be <= 9. 01067 enum { _S_iterator_buf_len = 15 }; 01068 size_t _M_current_pos; 01069 _RopeRep* _M_root; // The whole rope. 01070 size_t _M_leaf_pos; // Starting position for current leaf 01071 __GC_CONST _CharT* _M_buf_start; 01072 // Buffer possibly 01073 // containing current char. 01074 __GC_CONST _CharT* _M_buf_ptr; 01075 // Pointer to current char in buffer. 01076 // != 0 ==> buffer valid. 01077 __GC_CONST _CharT* _M_buf_end; 01078 // One past __last valid char in buffer. 01079 // What follows is the path cache. We go out of our 01080 // way to make this compact. 01081 // Path_end contains the bottom section of the path from 01082 // the root to the current leaf. 01083 const _RopeRep* _M_path_end[_S_path_cache_len]; 01084 int _M_leaf_index; // Last valid __pos in path_end; 01085 // _M_path_end[0] ... _M_path_end[leaf_index-1] 01086 // point to concatenation nodes. 01087 unsigned char _M_path_directions; 01088 // (path_directions >> __i) & 1 is 1 01089 // iff we got from _M_path_end[leaf_index - __i - 1] 01090 // to _M_path_end[leaf_index - __i] by going to the 01091 // __right. Assumes path_cache_len <= 9. 01092 _CharT _M_tmp_buf[_S_iterator_buf_len]; 01093 // Short buffer for surrounding chars. 01094 // This is useful primarily for 01095 // RopeFunctions. We put the buffer 01096 // here to avoid locking in the 01097 // multithreaded case. 01098 // The cached path is generally assumed to be valid 01099 // only if the buffer is valid. 01100 static void _S_setbuf(_Rope_iterator_base& __x); 01101 // Set buffer contents given 01102 // path cache. 01103 static void _S_setcache(_Rope_iterator_base& __x); 01104 // Set buffer contents and 01105 // path cache. 01106 static void _S_setcache_for_incr(_Rope_iterator_base& __x); 01107 // As above, but assumes path 01108 // cache is valid for previous posn. 01109 _Rope_iterator_base() { } 01110 01111 _Rope_iterator_base(_RopeRep* __root, size_t __pos) 01112 : _M_current_pos(__pos), _M_root(__root), _M_buf_ptr(0) { } 01113 01114 void _M_incr(size_t __n); 01115 void _M_decr(size_t __n); 01116 public: 01117 size_t 01118 index() const 01119 { return _M_current_pos; } 01120 01121 _Rope_iterator_base(const _Rope_iterator_base& __x) 01122 { 01123 if (0 != __x._M_buf_ptr) 01124 *this = __x; 01125 else 01126 { 01127 _M_current_pos = __x._M_current_pos; 01128 _M_root = __x._M_root; 01129 _M_buf_ptr = 0; 01130 } 01131 } 01132 }; 01133 01134 template<class _CharT, class _Alloc> 01135 class _Rope_iterator; 01136 01137 template<class _CharT, class _Alloc> 01138 class _Rope_const_iterator 01139 : public _Rope_iterator_base<_CharT, _Alloc> 01140 { 01141 friend class rope<_CharT, _Alloc>; 01142 protected: 01143 typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep; 01144 // The one from the base class may not be directly visible. 01145 _Rope_const_iterator(const _RopeRep* __root, size_t __pos) 01146 : _Rope_iterator_base<_CharT, _Alloc>(const_cast<_RopeRep*>(__root), 01147 __pos) 01148 // Only nonconst iterators modify root ref count 01149 { } 01150 public: 01151 typedef _CharT reference; // Really a value. Returning a reference 01152 // Would be a mess, since it would have 01153 // to be included in refcount. 01154 typedef const _CharT* pointer; 01155 01156 public: 01157 _Rope_const_iterator() { }; 01158 01159 _Rope_const_iterator(const _Rope_const_iterator& __x) 01160 : _Rope_iterator_base<_CharT,_Alloc>(__x) { } 01161 01162 _Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x); 01163 01164 _Rope_const_iterator(const rope<_CharT, _Alloc>& __r, size_t __pos) 01165 : _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) { } 01166 01167 _Rope_const_iterator& 01168 operator=(const _Rope_const_iterator& __x) 01169 { 01170 if (0 != __x._M_buf_ptr) 01171 *(static_cast<_Rope_iterator_base<_CharT, _Alloc>*>(this)) = __x; 01172 else 01173 { 01174 this->_M_current_pos = __x._M_current_pos; 01175 this->_M_root = __x._M_root; 01176 this->_M_buf_ptr = 0; 01177 } 01178 return(*this); 01179 } 01180 01181 reference 01182 operator*() 01183 { 01184 if (0 == this->_M_buf_ptr) 01185 this->_S_setcache(*this); 01186 return *this->_M_buf_ptr; 01187 } 01188 01189 // Without this const version, Rope iterators do not meet the 01190 // requirements of an Input Iterator. 01191 reference 01192 operator*() const 01193 { 01194 return *const_cast<_Rope_const_iterator&>(*this); 01195 } 01196 01197 _Rope_const_iterator& 01198 operator++() 01199 { 01200 __GC_CONST _CharT* __next; 01201 if (0 != this->_M_buf_ptr 01202 && (__next = this->_M_buf_ptr + 1) < this->_M_buf_end) 01203 { 01204 this->_M_buf_ptr = __next; 01205 ++this->_M_current_pos; 01206 } 01207 else 01208 this->_M_incr(1); 01209 return *this; 01210 } 01211 01212 _Rope_const_iterator& 01213 operator+=(ptrdiff_t __n) 01214 { 01215 if (__n >= 0) 01216 this->_M_incr(__n); 01217 else 01218 this->_M_decr(-__n); 01219 return *this; 01220 } 01221 01222 _Rope_const_iterator& 01223 operator--() 01224 { 01225 this->_M_decr(1); 01226 return *this; 01227 } 01228 01229 _Rope_const_iterator& 01230 operator-=(ptrdiff_t __n) 01231 { 01232 if (__n >= 0) 01233 this->_M_decr(__n); 01234 else 01235 this->_M_incr(-__n); 01236 return *this; 01237 } 01238 01239 _Rope_const_iterator 01240 operator++(int) 01241 { 01242 size_t __old_pos = this->_M_current_pos; 01243 this->_M_incr(1); 01244 return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos); 01245 // This makes a subsequent dereference expensive. 01246 // Perhaps we should instead copy the iterator 01247 // if it has a valid cache? 01248 } 01249 01250 _Rope_const_iterator 01251 operator--(int) 01252 { 01253 size_t __old_pos = this->_M_current_pos; 01254 this->_M_decr(1); 01255 return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos); 01256 } 01257 01258 template<class _CharT2, class _Alloc2> 01259 friend _Rope_const_iterator<_CharT2, _Alloc2> 01260 operator-(const _Rope_const_iterator<_CharT2, _Alloc2>& __x, 01261 ptrdiff_t __n); 01262 01263 template<class _CharT2, class _Alloc2> 01264 friend _Rope_const_iterator<_CharT2, _Alloc2> 01265 operator+(const _Rope_const_iterator<_CharT2, _Alloc2>& __x, 01266 ptrdiff_t __n); 01267 01268 template<class _CharT2, class _Alloc2> 01269 friend _Rope_const_iterator<_CharT2, _Alloc2> 01270 operator+(ptrdiff_t __n, 01271 const _Rope_const_iterator<_CharT2, _Alloc2>& __x); 01272 01273 reference 01274 operator[](size_t __n) 01275 { return rope<_CharT, _Alloc>::_S_fetch(this->_M_root, 01276 this->_M_current_pos + __n); } 01277 01278 template<class _CharT2, class _Alloc2> 01279 friend bool 01280 operator==(const _Rope_const_iterator<_CharT2, _Alloc2>& __x, 01281 const _Rope_const_iterator<_CharT2, _Alloc2>& __y); 01282 01283 template<class _CharT2, class _Alloc2> 01284 friend bool 01285 operator<(const _Rope_const_iterator<_CharT2, _Alloc2>& __x, 01286 const _Rope_const_iterator<_CharT2, _Alloc2>& __y); 01287 01288 template<class _CharT2, class _Alloc2> 01289 friend ptrdiff_t 01290 operator-(const _Rope_const_iterator<_CharT2, _Alloc2>& __x, 01291 const _Rope_const_iterator<_CharT2, _Alloc2>& __y); 01292 }; 01293 01294 template<class _CharT, class _Alloc> 01295 class _Rope_iterator 01296 : public _Rope_iterator_base<_CharT, _Alloc> 01297 { 01298 friend class rope<_CharT, _Alloc>; 01299 protected: 01300 typedef typename _Rope_iterator_base<_CharT, _Alloc>::_RopeRep _RopeRep; 01301 rope<_CharT, _Alloc>* _M_root_rope; 01302 01303 // root is treated as a cached version of this, and is used to 01304 // detect changes to the underlying rope. 01305 01306 // Root is included in the reference count. This is necessary 01307 // so that we can detect changes reliably. Unfortunately, it 01308 // requires careful bookkeeping for the nonGC case. 01309 _Rope_iterator(rope<_CharT, _Alloc>* __r, size_t __pos) 01310 : _Rope_iterator_base<_CharT, _Alloc>(__r->_M_tree_ptr, __pos), 01311 _M_root_rope(__r) 01312 { _RopeRep::_S_ref(this->_M_root); 01313 if (!(__r -> empty())) 01314 this->_S_setcache(*this); 01315 } 01316 01317 void _M_check(); 01318 public: 01319 typedef _Rope_char_ref_proxy<_CharT, _Alloc> reference; 01320 typedef _Rope_char_ref_proxy<_CharT, _Alloc>* pointer; 01321 01322 rope<_CharT, _Alloc>& 01323 container() 01324 { return *_M_root_rope; } 01325 01326 _Rope_iterator() 01327 { 01328 this->_M_root = 0; // Needed for reference counting. 01329 }; 01330 01331 _Rope_iterator(const _Rope_iterator& __x) 01332 : _Rope_iterator_base<_CharT, _Alloc>(__x) 01333 { 01334 _M_root_rope = __x._M_root_rope; 01335 _RopeRep::_S_ref(this->_M_root); 01336 } 01337 01338 _Rope_iterator(rope<_CharT, _Alloc>& __r, size_t __pos); 01339 01340 ~_Rope_iterator() 01341 { _RopeRep::_S_unref(this->_M_root); } 01342 01343 _Rope_iterator& 01344 operator=(const _Rope_iterator& __x) 01345 { 01346 _RopeRep* __old = this->_M_root; 01347 01348 _RopeRep::_S_ref(__x._M_root); 01349 if (0 != __x._M_buf_ptr) 01350 { 01351 _M_root_rope = __x._M_root_rope; 01352 *(static_cast<_Rope_iterator_base<_CharT, _Alloc>*>(this)) = __x; 01353 } 01354 else 01355 { 01356 this->_M_current_pos = __x._M_current_pos; 01357 this->_M_root = __x._M_root; 01358 _M_root_rope = __x._M_root_rope; 01359 this->_M_buf_ptr = 0; 01360 } 01361 _RopeRep::_S_unref(__old); 01362 return(*this); 01363 } 01364 01365 reference 01366 operator*() 01367 { 01368 _M_check(); 01369 if (0 == this->_M_buf_ptr) 01370 return _Rope_char_ref_proxy<_CharT, _Alloc>(_M_root_rope, 01371 this->_M_current_pos); 01372 else 01373 return _Rope_char_ref_proxy<_CharT, _Alloc>(_M_root_rope, 01374 this->_M_current_pos, 01375 *this->_M_buf_ptr); 01376 } 01377 01378 // See above comment. 01379 reference 01380 operator*() const 01381 { 01382 return *const_cast<_Rope_iterator&>(*this); 01383 } 01384 01385 _Rope_iterator& 01386 operator++() 01387 { 01388 this->_M_incr(1); 01389 return *this; 01390 } 01391 01392 _Rope_iterator& 01393 operator+=(ptrdiff_t __n) 01394 { 01395 if (__n >= 0) 01396 this->_M_incr(__n); 01397 else 01398 this->_M_decr(-__n); 01399 return *this; 01400 } 01401 01402 _Rope_iterator& 01403 operator--() 01404 { 01405 this->_M_decr(1); 01406 return *this; 01407 } 01408 01409 _Rope_iterator& 01410 operator-=(ptrdiff_t __n) 01411 { 01412 if (__n >= 0) 01413 this->_M_decr(__n); 01414 else 01415 this->_M_incr(-__n); 01416 return *this; 01417 } 01418 01419 _Rope_iterator 01420 operator++(int) 01421 { 01422 size_t __old_pos = this->_M_current_pos; 01423 this->_M_incr(1); 01424 return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos); 01425 } 01426 01427 _Rope_iterator 01428 operator--(int) 01429 { 01430 size_t __old_pos = this->_M_current_pos; 01431 this->_M_decr(1); 01432 return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos); 01433 } 01434 01435 reference 01436 operator[](ptrdiff_t __n) 01437 { return _Rope_char_ref_proxy<_CharT, _Alloc>(_M_root_rope, 01438 this->_M_current_pos 01439 + __n); } 01440 01441 template<class _CharT2, class _Alloc2> 01442 friend bool 01443 operator==(const _Rope_iterator<_CharT2, _Alloc2>& __x, 01444 const _Rope_iterator<_CharT2, _Alloc2>& __y); 01445 01446 template<class _CharT2, class _Alloc2> 01447 friend bool 01448 operator<(const _Rope_iterator<_CharT2, _Alloc2>& __x, 01449 const _Rope_iterator<_CharT2, _Alloc2>& __y); 01450 01451 template<class _CharT2, class _Alloc2> 01452 friend ptrdiff_t 01453 operator-(const _Rope_iterator<_CharT2, _Alloc2>& __x, 01454 const _Rope_iterator<_CharT2, _Alloc2>& __y); 01455 01456 template<class _CharT2, class _Alloc2> 01457 friend _Rope_iterator<_CharT2, _Alloc2> 01458 operator-(const _Rope_iterator<_CharT2, _Alloc2>& __x, ptrdiff_t __n); 01459 01460 template<class _CharT2, class _Alloc2> 01461 friend _Rope_iterator<_CharT2, _Alloc2> 01462 operator+(const _Rope_iterator<_CharT2, _Alloc2>& __x, ptrdiff_t __n); 01463 01464 template<class _CharT2, class _Alloc2> 01465 friend _Rope_iterator<_CharT2, _Alloc2> 01466 operator+(ptrdiff_t __n, const _Rope_iterator<_CharT2, _Alloc2>& __x); 01467 }; 01468 01469 01470 template <class _CharT, class _Alloc> 01471 struct _Rope_base 01472 : public _Alloc 01473 { 01474 typedef _Alloc allocator_type; 01475 01476 allocator_type 01477 get_allocator() const 01478 { return *static_cast<const _Alloc*>(this); } 01479 01480 allocator_type& 01481 _M_get_allocator() 01482 { return *static_cast<_Alloc*>(this); } 01483 01484 const allocator_type& 01485 _M_get_allocator() const 01486 { return *static_cast<const _Alloc*>(this); } 01487 01488 typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep; 01489 // The one in _Base may not be visible due to template rules. 01490 01491 _Rope_base(_RopeRep* __t, const allocator_type&) 01492 : _M_tree_ptr(__t) { } 01493 01494 _Rope_base(const allocator_type&) { } 01495 01496 // The only data member of a rope: 01497 _RopeRep *_M_tree_ptr; 01498 01499 #define __ROPE_DEFINE_ALLOC(_Tp, __name) \ 01500 typedef typename \ 01501 _Alloc::template rebind<_Tp>::other __name##Alloc; \ 01502 static _Tp* __name##_allocate(size_t __n) \ 01503 { return __name##Alloc().allocate(__n); } \ 01504 static void __name##_deallocate(_Tp *__p, size_t __n) \ 01505 { __name##Alloc().deallocate(__p, __n); } 01506 __ROPE_DEFINE_ALLOCS(_Alloc) 01507 #undef __ROPE_DEFINE_ALLOC 01508 01509 protected: 01510 _Rope_base& 01511 operator=(const _Rope_base&); 01512 01513 _Rope_base(const _Rope_base&); 01514 }; 01515 01516 /** 01517 * This is an SGI extension. 01518 * @ingroup SGIextensions 01519 * @doctodo 01520 */ 01521 template <class _CharT, class _Alloc> 01522 class rope : public _Rope_base<_CharT, _Alloc> 01523 { 01524 public: 01525 typedef _CharT value_type; 01526 typedef ptrdiff_t difference_type; 01527 typedef size_t size_type; 01528 typedef _CharT const_reference; 01529 typedef const _CharT* const_pointer; 01530 typedef _Rope_iterator<_CharT, _Alloc> iterator; 01531 typedef _Rope_const_iterator<_CharT, _Alloc> const_iterator; 01532 typedef _Rope_char_ref_proxy<_CharT, _Alloc> reference; 01533 typedef _Rope_char_ptr_proxy<_CharT, _Alloc> pointer; 01534 01535 friend class _Rope_iterator<_CharT, _Alloc>; 01536 friend class _Rope_const_iterator<_CharT, _Alloc>; 01537 friend struct _Rope_RopeRep<_CharT, _Alloc>; 01538 friend class _Rope_iterator_base<_CharT, _Alloc>; 01539 friend class _Rope_char_ptr_proxy<_CharT, _Alloc>; 01540 friend class _Rope_char_ref_proxy<_CharT, _Alloc>; 01541 friend struct _Rope_RopeSubstring<_CharT, _Alloc>; 01542 01543 protected: 01544 typedef _Rope_base<_CharT, _Alloc> _Base; 01545 typedef typename _Base::allocator_type allocator_type; 01546 using _Base::_M_tree_ptr; 01547 using _Base::get_allocator; 01548 using _Base::_M_get_allocator; 01549 typedef __GC_CONST _CharT* _Cstrptr; 01550 01551 static _CharT _S_empty_c_str[1]; 01552 01553 static bool 01554 _S_is0(_CharT __c) 01555 { return __c == _S_eos((_CharT*)0); } 01556 01557 enum { _S_copy_max = 23 }; 01558 // For strings shorter than _S_copy_max, we copy to 01559 // concatenate. 01560 01561 typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep; 01562 typedef _Rope_RopeConcatenation<_CharT, _Alloc> _RopeConcatenation; 01563 typedef _Rope_RopeLeaf<_CharT, _Alloc> _RopeLeaf; 01564 typedef _Rope_RopeFunction<_CharT, _Alloc> _RopeFunction; 01565 typedef _Rope_RopeSubstring<_CharT, _Alloc> _RopeSubstring; 01566 01567 // Retrieve a character at the indicated position. 01568 static _CharT _S_fetch(_RopeRep* __r, size_type __pos); 01569 01570 #ifndef __GC 01571 // Obtain a pointer to the character at the indicated position. 01572 // The pointer can be used to change the character. 01573 // If such a pointer cannot be produced, as is frequently the 01574 // case, 0 is returned instead. 01575 // (Returns nonzero only if all nodes in the path have a refcount 01576 // of 1.) 01577 static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos); 01578 #endif 01579 01580 static bool 01581 _S_apply_to_pieces(// should be template parameter 01582 _Rope_char_consumer<_CharT>& __c, 01583 const _RopeRep* __r, 01584 size_t __begin, size_t __end); 01585 // begin and end are assumed to be in range. 01586 01587 #ifndef __GC 01588 static void 01589 _S_unref(_RopeRep* __t) 01590 { _RopeRep::_S_unref(__t); } 01591 01592 static void 01593 _S_ref(_RopeRep* __t) 01594 { _RopeRep::_S_ref(__t); } 01595 01596 #else /* __GC */ 01597 static void _S_unref(_RopeRep*) { } 01598 static void _S_ref(_RopeRep*) { } 01599 #endif 01600 01601 #ifdef __GC 01602 typedef _Rope_RopeRep<_CharT, _Alloc>* _Self_destruct_ptr; 01603 #else 01604 typedef _Rope_self_destruct_ptr<_CharT, _Alloc> _Self_destruct_ptr; 01605 #endif 01606 01607 // _Result is counted in refcount. 01608 static _RopeRep* _S_substring(_RopeRep* __base, 01609 size_t __start, size_t __endp1); 01610 01611 static _RopeRep* _S_concat_char_iter(_RopeRep* __r, 01612 const _CharT* __iter, size_t __slen); 01613 // Concatenate rope and char ptr, copying __s. 01614 // Should really take an arbitrary iterator. 01615 // Result is counted in refcount. 01616 static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r, 01617 const _CharT* __iter, 01618 size_t __slen) 01619 // As above, but one reference to __r is about to be 01620 // destroyed. Thus the pieces may be recycled if all 01621 // relevant reference counts are 1. 01622 #ifdef __GC 01623 // We can't really do anything since refcounts are unavailable. 01624 { return _S_concat_char_iter(__r, __iter, __slen); } 01625 #else 01626 ; 01627 #endif 01628 01629 static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right); 01630 // General concatenation on _RopeRep. _Result 01631 // has refcount of 1. Adjusts argument refcounts. 01632 01633 public: 01634 void 01635 apply_to_pieces(size_t __begin, size_t __end, 01636 _Rope_char_consumer<_CharT>& __c) const 01637 { _S_apply_to_pieces(__c, this->_M_tree_ptr, __begin, __end); } 01638 01639 protected: 01640 01641 static size_t 01642 _S_rounded_up_size(size_t __n) 01643 { return _RopeLeaf::_S_rounded_up_size(__n); } 01644 01645 static size_t 01646 _S_allocated_capacity(size_t __n) 01647 { 01648 if (_S_is_basic_char_type((_CharT*)0)) 01649 return _S_rounded_up_size(__n) - 1; 01650 else 01651 return _S_rounded_up_size(__n); 01652 01653 } 01654 01655 // Allocate and construct a RopeLeaf using the supplied allocator 01656 // Takes ownership of s instead of copying. 01657 static _RopeLeaf* 01658 _S_new_RopeLeaf(__GC_CONST _CharT *__s, 01659 size_t __size, allocator_type& __a) 01660 { 01661 _RopeLeaf* __space = typename _Base::_LAlloc(__a).allocate(1); 01662 return new(__space) _RopeLeaf(__s, __size, __a); 01663 } 01664 01665 static _RopeConcatenation* 01666 _S_new_RopeConcatenation(_RopeRep* __left, _RopeRep* __right, 01667 allocator_type& __a) 01668 { 01669 _RopeConcatenation* __space = typename _Base::_CAlloc(__a).allocate(1); 01670 return new(__space) _RopeConcatenation(__left, __right, __a); 01671 } 01672 01673 static _RopeFunction* 01674 _S_new_RopeFunction(char_producer<_CharT>* __f, 01675 size_t __size, bool __d, allocator_type& __a) 01676 { 01677 _RopeFunction* __space = typename _Base::_FAlloc(__a).allocate(1); 01678 return new(__space) _RopeFunction(__f, __size, __d, __a); 01679 } 01680 01681 static _RopeSubstring* 01682 _S_new_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s, 01683 size_t __l, allocator_type& __a) 01684 { 01685 _RopeSubstring* __space = typename _Base::_SAlloc(__a).allocate(1); 01686 return new(__space) _RopeSubstring(__b, __s, __l, __a); 01687 } 01688 01689 static _RopeLeaf* 01690 _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s, 01691 size_t __size, allocator_type& __a) 01692 #define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \ 01693 _S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a) 01694 { 01695 if (0 == __size) 01696 return 0; 01697 _CharT* __buf = __a.allocate(_S_rounded_up_size(__size)); 01698 01699 __uninitialized_copy_n_a(__s, __size, __buf, __a); 01700 _S_cond_store_eos(__buf[__size]); 01701 __try 01702 { return _S_new_RopeLeaf(__buf, __size, __a); } 01703 __catch(...) 01704 { 01705 _RopeRep::__STL_FREE_STRING(__buf, __size, __a); 01706 __throw_exception_again; 01707 } 01708 } 01709 01710 // Concatenation of nonempty strings. 01711 // Always builds a concatenation node. 01712 // Rebalances if the result is too deep. 01713 // Result has refcount 1. 01714 // Does not increment left and right ref counts even though 01715 // they are referenced. 01716 static _RopeRep* 01717 _S_tree_concat(_RopeRep* __left, _RopeRep* __right); 01718 01719 // Concatenation helper functions 01720 static _RopeLeaf* 01721 _S_leaf_concat_char_iter(_RopeLeaf* __r, 01722 const _CharT* __iter, size_t __slen); 01723 // Concatenate by copying leaf. 01724 // should take an arbitrary iterator 01725 // result has refcount 1. 01726 #ifndef __GC 01727 static _RopeLeaf* 01728 _S_destr_leaf_concat_char_iter(_RopeLeaf* __r, 01729 const _CharT* __iter, size_t __slen); 01730 // A version that potentially clobbers __r if __r->_M_ref_count == 1. 01731 #endif 01732 01733 private: 01734 01735 static size_t _S_char_ptr_len(const _CharT* __s); 01736 // slightly generalized strlen 01737 01738 rope(_RopeRep* __t, const allocator_type& __a = allocator_type()) 01739 : _Base(__t, __a) { } 01740 01741 01742 // Copy __r to the _CharT buffer. 01743 // Returns __buffer + __r->_M_size. 01744 // Assumes that buffer is uninitialized. 01745 static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer); 01746 01747 // Again, with explicit starting position and length. 01748 // Assumes that buffer is uninitialized. 01749 static _CharT* _S_flatten(_RopeRep* __r, 01750 size_t __start, size_t __len, 01751 _CharT* __buffer); 01752 01753 static const unsigned long 01754 _S_min_len[__detail::_S_max_rope_depth + 1]; 01755 01756 static bool 01757 _S_is_balanced(_RopeRep* __r) 01758 { return (__r->_M_size >= _S_min_len[__r->_M_depth]); } 01759 01760 static bool 01761 _S_is_almost_balanced(_RopeRep* __r) 01762 { return (__r->_M_depth == 0 01763 || __r->_M_size >= _S_min_len[__r->_M_depth - 1]); } 01764 01765 static bool 01766 _S_is_roughly_balanced(_RopeRep* __r) 01767 { return (__r->_M_depth <= 1 01768 || __r->_M_size >= _S_min_len[__r->_M_depth - 2]); } 01769 01770 // Assumes the result is not empty. 01771 static _RopeRep* 01772 _S_concat_and_set_balanced(_RopeRep* __left, _RopeRep* __right) 01773 { 01774 _RopeRep* __result = _S_concat(__left, __right); 01775 if (_S_is_balanced(__result)) 01776 __result->_M_is_balanced = true; 01777 return __result; 01778 } 01779 01780 // The basic rebalancing operation. Logically copies the 01781 // rope. The result has refcount of 1. The client will 01782 // usually decrement the reference count of __r. 01783 // The result is within height 2 of balanced by the above 01784 // definition. 01785 static _RopeRep* _S_balance(_RopeRep* __r); 01786 01787 // Add all unbalanced subtrees to the forest of balanced trees. 01788 // Used only by balance. 01789 static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest); 01790 01791 // Add __r to forest, assuming __r is already balanced. 01792 static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest); 01793 01794 // Print to stdout, exposing structure 01795 static void _S_dump(_RopeRep* __r, int __indent = 0); 01796 01797 // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp. 01798 static int _S_compare(const _RopeRep* __x, const _RopeRep* __y); 01799 01800 public: 01801 bool 01802 empty() const 01803 { return 0 == this->_M_tree_ptr; } 01804 01805 // Comparison member function. This is public only for those 01806 // clients that need a ternary comparison. Others 01807 // should use the comparison operators below. 01808 int 01809 compare(const rope& __y) const 01810 { return _S_compare(this->_M_tree_ptr, __y._M_tree_ptr); } 01811 01812 rope(const _CharT* __s, const allocator_type& __a = allocator_type()) 01813 : _Base(__a) 01814 { 01815 this->_M_tree_ptr = 01816 __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s), 01817 _M_get_allocator()); 01818 } 01819 01820 rope(const _CharT* __s, size_t __len, 01821 const allocator_type& __a = allocator_type()) 01822 : _Base(__a) 01823 { 01824 this->_M_tree_ptr = 01825 __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, _M_get_allocator()); 01826 } 01827 01828 // Should perhaps be templatized with respect to the iterator type 01829 // and use Sequence_buffer. (It should perhaps use sequence_buffer 01830 // even now.) 01831 rope(const _CharT* __s, const _CharT* __e, 01832 const allocator_type& __a = allocator_type()) 01833 : _Base(__a) 01834 { 01835 this->_M_tree_ptr = 01836 __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, _M_get_allocator()); 01837 } 01838 01839 rope(const const_iterator& __s, const const_iterator& __e, 01840 const allocator_type& __a = allocator_type()) 01841 : _Base(_S_substring(__s._M_root, __s._M_current_pos, 01842 __e._M_current_pos), __a) 01843 { } 01844 01845 rope(const iterator& __s, const iterator& __e, 01846 const allocator_type& __a = allocator_type()) 01847 : _Base(_S_substring(__s._M_root, __s._M_current_pos, 01848 __e._M_current_pos), __a) 01849 { } 01850 01851 rope(_CharT __c, const allocator_type& __a = allocator_type()) 01852 : _Base(__a) 01853 { 01854 _CharT* __buf = this->_Data_allocate(_S_rounded_up_size(1)); 01855 01856 _M_get_allocator().construct(__buf, __c); 01857 __try 01858 { 01859 this->_M_tree_ptr = _S_new_RopeLeaf(__buf, 1, 01860 _M_get_allocator()); 01861 } 01862 __catch(...) 01863 { 01864 _RopeRep::__STL_FREE_STRING(__buf, 1, _M_get_allocator()); 01865 __throw_exception_again; 01866 } 01867 } 01868 01869 rope(size_t __n, _CharT __c, 01870 const allocator_type& __a = allocator_type()); 01871 01872 rope(const allocator_type& __a = allocator_type()) 01873 : _Base(0, __a) { } 01874 01875 // Construct a rope from a function that can compute its members 01876 rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn, 01877 const allocator_type& __a = allocator_type()) 01878 : _Base(__a) 01879 { 01880 this->_M_tree_ptr = (0 == __len) ? 01881 0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a); 01882 } 01883 01884 rope(const rope& __x, const allocator_type& __a = allocator_type()) 01885 : _Base(__x._M_tree_ptr, __a) 01886 { _S_ref(this->_M_tree_ptr); } 01887 01888 ~rope() throw() 01889 { _S_unref(this->_M_tree_ptr); } 01890 01891 rope& 01892 operator=(const rope& __x) 01893 { 01894 _RopeRep* __old = this->_M_tree_ptr; 01895 this->_M_tree_ptr = __x._M_tree_ptr; 01896 _S_ref(this->_M_tree_ptr); 01897 _S_unref(__old); 01898 return *this; 01899 } 01900 01901 void 01902 clear() 01903 { 01904 _S_unref(this->_M_tree_ptr); 01905 this->_M_tree_ptr = 0; 01906 } 01907 01908 void 01909 push_back(_CharT __x) 01910 { 01911 _RopeRep* __old = this->_M_tree_ptr; 01912 this->_M_tree_ptr 01913 = _S_destr_concat_char_iter(this->_M_tree_ptr, &__x, 1); 01914 _S_unref(__old); 01915 } 01916 01917 void 01918 pop_back() 01919 { 01920 _RopeRep* __old = this->_M_tree_ptr; 01921 this->_M_tree_ptr = _S_substring(this->_M_tree_ptr, 01922 0, this->_M_tree_ptr->_M_size - 1); 01923 _S_unref(__old); 01924 } 01925 01926 _CharT 01927 back() const 01928 { return _S_fetch(this->_M_tree_ptr, this->_M_tree_ptr->_M_size - 1); } 01929 01930 void 01931 push_front(_CharT __x) 01932 { 01933 _RopeRep* __old = this->_M_tree_ptr; 01934 _RopeRep* __left = 01935 __STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, _M_get_allocator()); 01936 __try 01937 { 01938 this->_M_tree_ptr = _S_concat(__left, this->_M_tree_ptr); 01939 _S_unref(__old); 01940 _S_unref(__left); 01941 } 01942 __catch(...) 01943 { 01944 _S_unref(__left); 01945 __throw_exception_again; 01946 } 01947 } 01948 01949 void 01950 pop_front() 01951 { 01952 _RopeRep* __old = this->_M_tree_ptr; 01953 this->_M_tree_ptr 01954 = _S_substring(this->_M_tree_ptr, 1, this->_M_tree_ptr->_M_size); 01955 _S_unref(__old); 01956 } 01957 01958 _CharT 01959 front() const 01960 { return _S_fetch(this->_M_tree_ptr, 0); } 01961 01962 void 01963 balance() 01964 { 01965 _RopeRep* __old = this->_M_tree_ptr; 01966 this->_M_tree_ptr = _S_balance(this->_M_tree_ptr); 01967 _S_unref(__old); 01968 } 01969 01970 void 01971 copy(_CharT* __buffer) const 01972 { 01973 _Destroy_const(__buffer, __buffer + size(), _M_get_allocator()); 01974 _S_flatten(this->_M_tree_ptr, __buffer); 01975 } 01976 01977 // This is the copy function from the standard, but 01978 // with the arguments reordered to make it consistent with the 01979 // rest of the interface. 01980 // Note that this guaranteed not to compile if the draft standard 01981 // order is assumed. 01982 size_type 01983 copy(size_type __pos, size_type __n, _CharT* __buffer) const 01984 { 01985 size_t __size = size(); 01986 size_t __len = (__pos + __n > __size? __size - __pos : __n); 01987 01988 _Destroy_const(__buffer, __buffer + __len, _M_get_allocator()); 01989 _S_flatten(this->_M_tree_ptr, __pos, __len, __buffer); 01990 return __len; 01991 } 01992 01993 // Print to stdout, exposing structure. May be useful for 01994 // performance debugging. 01995 void 01996 dump() 01997 { _S_dump(this->_M_tree_ptr); } 01998 01999 // Convert to 0 terminated string in new allocated memory. 02000 // Embedded 0s in the input do not terminate the copy. 02001 const _CharT* c_str() const; 02002 02003 // As above, but also use the flattened representation as 02004 // the new rope representation. 02005 const _CharT* replace_with_c_str(); 02006 02007 // Reclaim memory for the c_str generated flattened string. 02008 // Intentionally undocumented, since it's hard to say when this 02009 // is safe for multiple threads. 02010 void 02011 delete_c_str () 02012 { 02013 if (0 == this->_M_tree_ptr) 02014 return; 02015 if (__detail::_S_leaf == this->_M_tree_ptr->_M_tag && 02016 ((_RopeLeaf*)this->_M_tree_ptr)->_M_data == 02017 this->_M_tree_ptr->_M_c_string) 02018 { 02019 // Representation shared 02020 return; 02021 } 02022 #ifndef __GC 02023 this->_M_tree_ptr->_M_free_c_string(); 02024 #endif 02025 this->_M_tree_ptr->_M_c_string = 0; 02026 } 02027 02028 _CharT 02029 operator[] (size_type __pos) const 02030 { return _S_fetch(this->_M_tree_ptr, __pos); } 02031 02032 _CharT 02033 at(size_type __pos) const 02034 { 02035 // if (__pos >= size()) throw out_of_range; // XXX 02036 return (*this)[__pos]; 02037 } 02038 02039 const_iterator 02040 begin() const 02041 { return(const_iterator(this->_M_tree_ptr, 0)); } 02042 02043 // An easy way to get a const iterator from a non-const container. 02044 const_iterator 02045 const_begin() const 02046 { return(const_iterator(this->_M_tree_ptr, 0)); } 02047 02048 const_iterator 02049 end() const 02050 { return(const_iterator(this->_M_tree_ptr, size())); } 02051 02052 const_iterator 02053 const_end() const 02054 { return(const_iterator(this->_M_tree_ptr, size())); } 02055 02056 size_type 02057 size() const 02058 { return(0 == this->_M_tree_ptr? 0 : this->_M_tree_ptr->_M_size); } 02059 02060 size_type 02061 length() const 02062 { return size(); } 02063 02064 size_type 02065 max_size() const 02066 { 02067 return _S_min_len[int(__detail::_S_max_rope_depth) - 1] - 1; 02068 // Guarantees that the result can be sufficiently 02069 // balanced. Longer ropes will probably still work, 02070 // but it's harder to make guarantees. 02071 } 02072 02073 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 02074 02075 const_reverse_iterator 02076 rbegin() const 02077 { return const_reverse_iterator(end()); } 02078 02079 const_reverse_iterator 02080 const_rbegin() const 02081 { return const_reverse_iterator(end()); } 02082 02083 const_reverse_iterator 02084 rend() const 02085 { return const_reverse_iterator(begin()); } 02086 02087 const_reverse_iterator 02088 const_rend() const 02089 { return const_reverse_iterator(begin()); } 02090 02091 template<class _CharT2, class _Alloc2> 02092 friend rope<_CharT2, _Alloc2> 02093 operator+(const rope<_CharT2, _Alloc2>& __left, 02094 const rope<_CharT2, _Alloc2>& __right); 02095 02096 template<class _CharT2, class _Alloc2> 02097 friend rope<_CharT2, _Alloc2> 02098 operator+(const rope<_CharT2, _Alloc2>& __left, const _CharT2* __right); 02099 02100 template<class _CharT2, class _Alloc2> 02101 friend rope<_CharT2, _Alloc2> 02102 operator+(const rope<_CharT2, _Alloc2>& __left, _CharT2 __right); 02103 02104 // The symmetric cases are intentionally omitted, since they're 02105 // presumed to be less common, and we don't handle them as well. 02106 02107 // The following should really be templatized. The first 02108 // argument should be an input iterator or forward iterator with 02109 // value_type _CharT. 02110 rope& 02111 append(const _CharT* __iter, size_t __n) 02112 { 02113 _RopeRep* __result = 02114 _S_destr_concat_char_iter(this->_M_tree_ptr, __iter, __n); 02115 _S_unref(this->_M_tree_ptr); 02116 this->_M_tree_ptr = __result; 02117 return *this; 02118 } 02119 02120 rope& 02121 append(const _CharT* __c_string) 02122 { 02123 size_t __len = _S_char_ptr_len(__c_string); 02124 append(__c_string, __len); 02125 return(*this); 02126 } 02127 02128 rope& 02129 append(const _CharT* __s, const _CharT* __e) 02130 { 02131 _RopeRep* __result = 02132 _S_destr_concat_char_iter(this->_M_tree_ptr, __s, __e - __s); 02133 _S_unref(this->_M_tree_ptr); 02134 this->_M_tree_ptr = __result; 02135 return *this; 02136 } 02137 02138 rope& 02139 append(const_iterator __s, const_iterator __e) 02140 { 02141 _Self_destruct_ptr __appendee(_S_substring(__s._M_root, 02142 __s._M_current_pos, 02143 __e._M_current_pos)); 02144 _RopeRep* __result = _S_concat(this->_M_tree_ptr, 02145 (_RopeRep*)__appendee); 02146 _S_unref(this->_M_tree_ptr); 02147 this->_M_tree_ptr = __result; 02148 return *this; 02149 } 02150 02151 rope& 02152 append(_CharT __c) 02153 { 02154 _RopeRep* __result = 02155 _S_destr_concat_char_iter(this->_M_tree_ptr, &__c, 1); 02156 _S_unref(this->_M_tree_ptr); 02157 this->_M_tree_ptr = __result; 02158 return *this; 02159 } 02160 02161 rope& 02162 append() 02163 { return append(_CharT()); } // XXX why? 02164 02165 rope& 02166 append(const rope& __y) 02167 { 02168 _RopeRep* __result = _S_concat(this->_M_tree_ptr, __y._M_tree_ptr); 02169 _S_unref(this->_M_tree_ptr); 02170 this->_M_tree_ptr = __result; 02171 return *this; 02172 } 02173 02174 rope& 02175 append(size_t __n, _CharT __c) 02176 { 02177 rope<_CharT,_Alloc> __last(__n, __c); 02178 return append(__last); 02179 } 02180 02181 void 02182 swap(rope& __b) 02183 { 02184 _RopeRep* __tmp = this->_M_tree_ptr; 02185 this->_M_tree_ptr = __b._M_tree_ptr; 02186 __b._M_tree_ptr = __tmp; 02187 } 02188 02189 protected: 02190 // Result is included in refcount. 02191 static _RopeRep* 02192 replace(_RopeRep* __old, size_t __pos1, 02193 size_t __pos2, _RopeRep* __r) 02194 { 02195 if (0 == __old) 02196 { 02197 _S_ref(__r); 02198 return __r; 02199 } 02200 _Self_destruct_ptr __left(_S_substring(__old, 0, __pos1)); 02201 _Self_destruct_ptr __right(_S_substring(__old, __pos2, __old->_M_size)); 02202 _RopeRep* __result; 02203 02204 if (0 == __r) 02205 __result = _S_concat(__left, __right); 02206 else 02207 { 02208 _Self_destruct_ptr __left_result(_S_concat(__left, __r)); 02209 __result = _S_concat(__left_result, __right); 02210 } 02211 return __result; 02212 } 02213 02214 public: 02215 void 02216 insert(size_t __p, const rope& __r) 02217 { 02218 _RopeRep* __result = 02219 replace(this->_M_tree_ptr, __p, __p, __r._M_tree_ptr); 02220 _S_unref(this->_M_tree_ptr); 02221 this->_M_tree_ptr = __result; 02222 } 02223 02224 void 02225 insert(size_t __p, size_t __n, _CharT __c) 02226 { 02227 rope<_CharT,_Alloc> __r(__n,__c); 02228 insert(__p, __r); 02229 } 02230 02231 void 02232 insert(size_t __p, const _CharT* __i, size_t __n) 02233 { 02234 _Self_destruct_ptr __left(_S_substring(this->_M_tree_ptr, 0, __p)); 02235 _Self_destruct_ptr __right(_S_substring(this->_M_tree_ptr, 02236 __p, size())); 02237 _Self_destruct_ptr __left_result(_S_concat_char_iter(__left, __i, __n)); 02238 // _S_ destr_concat_char_iter should be safe here. 02239 // But as it stands it's probably not a win, since __left 02240 // is likely to have additional references. 02241 _RopeRep* __result = _S_concat(__left_result, __right); 02242 _S_unref(this->_M_tree_ptr); 02243 this->_M_tree_ptr = __result; 02244 } 02245 02246 void 02247 insert(size_t __p, const _CharT* __c_string) 02248 { insert(__p, __c_string, _S_char_ptr_len(__c_string)); } 02249 02250 void 02251 insert(size_t __p, _CharT __c) 02252 { insert(__p, &__c, 1); } 02253 02254 void 02255 insert(size_t __p) 02256 { 02257 _CharT __c = _CharT(); 02258 insert(__p, &__c, 1); 02259 } 02260 02261 void 02262 insert(size_t __p, const _CharT* __i, const _CharT* __j) 02263 { 02264 rope __r(__i, __j); 02265 insert(__p, __r); 02266 } 02267 02268 void 02269 insert(size_t __p, const const_iterator& __i, 02270 const const_iterator& __j) 02271 { 02272 rope __r(__i, __j); 02273 insert(__p, __r); 02274 } 02275 02276 void 02277 insert(size_t __p, const iterator& __i, 02278 const iterator& __j) 02279 { 02280 rope __r(__i, __j); 02281 insert(__p, __r); 02282 } 02283 02284 // (position, length) versions of replace operations: 02285 02286 void 02287 replace(size_t __p, size_t __n, const rope& __r) 02288 { 02289 _RopeRep* __result = 02290 replace(this->_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr); 02291 _S_unref(this->_M_tree_ptr); 02292 this->_M_tree_ptr = __result; 02293 } 02294 02295 void 02296 replace(size_t __p, size_t __n, 02297 const _CharT* __i, size_t __i_len) 02298 { 02299 rope __r(__i, __i_len); 02300 replace(__p, __n, __r); 02301 } 02302 02303 void 02304 replace(size_t __p, size_t __n, _CharT __c) 02305 { 02306 rope __r(__c); 02307 replace(__p, __n, __r); 02308 } 02309 02310 void 02311 replace(size_t __p, size_t __n, const _CharT* __c_string) 02312 { 02313 rope __r(__c_string); 02314 replace(__p, __n, __r); 02315 } 02316 02317 void 02318 replace(size_t __p, size_t __n, 02319 const _CharT* __i, const _CharT* __j) 02320 { 02321 rope __r(__i, __j); 02322 replace(__p, __n, __r); 02323 } 02324 02325 void 02326 replace(size_t __p, size_t __n, 02327 const const_iterator& __i, const const_iterator& __j) 02328 { 02329 rope __r(__i, __j); 02330 replace(__p, __n, __r); 02331 } 02332 02333 void 02334 replace(size_t __p, size_t __n, 02335 const iterator& __i, const iterator& __j) 02336 { 02337 rope __r(__i, __j); 02338 replace(__p, __n, __r); 02339 } 02340 02341 // Single character variants: 02342 void 02343 replace(size_t __p, _CharT __c) 02344 { 02345 iterator __i(this, __p); 02346 *__i = __c; 02347 } 02348 02349 void 02350 replace(size_t __p, const rope& __r) 02351 { replace(__p, 1, __r); } 02352 02353 void 02354 replace(size_t __p, const _CharT* __i, size_t __i_len) 02355 { replace(__p, 1, __i, __i_len); } 02356 02357 void 02358 replace(size_t __p, const _CharT* __c_string) 02359 { replace(__p, 1, __c_string); } 02360 02361 void 02362 replace(size_t __p, const _CharT* __i, const _CharT* __j) 02363 { replace(__p, 1, __i, __j); } 02364 02365 void 02366 replace(size_t __p, const const_iterator& __i, 02367 const const_iterator& __j) 02368 { replace(__p, 1, __i, __j); } 02369 02370 void 02371 replace(size_t __p, const iterator& __i, 02372 const iterator& __j) 02373 { replace(__p, 1, __i, __j); } 02374 02375 // Erase, (position, size) variant. 02376 void 02377 erase(size_t __p, size_t __n) 02378 { 02379 _RopeRep* __result = replace(this->_M_tree_ptr, __p, 02380 __p + __n, 0); 02381 _S_unref(this->_M_tree_ptr); 02382 this->_M_tree_ptr = __result; 02383 } 02384 02385 // Erase, single character 02386 void 02387 erase(size_t __p) 02388 { erase(__p, __p + 1); } 02389 02390 // Insert, iterator variants. 02391 iterator 02392 insert(const iterator& __p, const rope& __r) 02393 { 02394 insert(__p.index(), __r); 02395 return __p; 02396 } 02397 02398 iterator 02399 insert(const iterator& __p, size_t __n, _CharT __c) 02400 { 02401 insert(__p.index(), __n, __c); 02402 return __p; 02403 } 02404 02405 iterator insert(const iterator& __p, _CharT __c) 02406 { 02407 insert(__p.index(), __c); 02408 return __p; 02409 } 02410 02411 iterator 02412 insert(const iterator& __p ) 02413 { 02414 insert(__p.index()); 02415 return __p; 02416 } 02417 02418 iterator 02419 insert(const iterator& __p, const _CharT* c_string) 02420 { 02421 insert(__p.index(), c_string); 02422 return __p; 02423 } 02424 02425 iterator 02426 insert(const iterator& __p, const _CharT* __i, size_t __n) 02427 { 02428 insert(__p.index(), __i, __n); 02429 return __p; 02430 } 02431 02432 iterator 02433 insert(const iterator& __p, const _CharT* __i, 02434 const _CharT* __j) 02435 { 02436 insert(__p.index(), __i, __j); 02437 return __p; 02438 } 02439 02440 iterator 02441 insert(const iterator& __p, 02442 const const_iterator& __i, const const_iterator& __j) 02443 { 02444 insert(__p.index(), __i, __j); 02445 return __p; 02446 } 02447 02448 iterator 02449 insert(const iterator& __p, 02450 const iterator& __i, const iterator& __j) 02451 { 02452 insert(__p.index(), __i, __j); 02453 return __p; 02454 } 02455 02456 // Replace, range variants. 02457 void 02458 replace(const iterator& __p, const iterator& __q, const rope& __r) 02459 { replace(__p.index(), __q.index() - __p.index(), __r); } 02460 02461 void 02462 replace(const iterator& __p, const iterator& __q, _CharT __c) 02463 { replace(__p.index(), __q.index() - __p.index(), __c); } 02464 02465 void 02466 replace(const iterator& __p, const iterator& __q, 02467 const _CharT* __c_string) 02468 { replace(__p.index(), __q.index() - __p.index(), __c_string); } 02469 02470 void 02471 replace(const iterator& __p, const iterator& __q, 02472 const _CharT* __i, size_t __n) 02473 { replace(__p.index(), __q.index() - __p.index(), __i, __n); } 02474 02475 void 02476 replace(const iterator& __p, const iterator& __q, 02477 const _CharT* __i, const _CharT* __j) 02478 { replace(__p.index(), __q.index() - __p.index(), __i, __j); } 02479 02480 void 02481 replace(const iterator& __p, const iterator& __q, 02482 const const_iterator& __i, const const_iterator& __j) 02483 { replace(__p.index(), __q.index() - __p.index(), __i, __j); } 02484 02485 void 02486 replace(const iterator& __p, const iterator& __q, 02487 const iterator& __i, const iterator& __j) 02488 { replace(__p.index(), __q.index() - __p.index(), __i, __j); } 02489 02490 // Replace, iterator variants. 02491 void 02492 replace(const iterator& __p, const rope& __r) 02493 { replace(__p.index(), __r); } 02494 02495 void 02496 replace(const iterator& __p, _CharT __c) 02497 { replace(__p.index(), __c); } 02498 02499 void 02500 replace(const iterator& __p, const _CharT* __c_string) 02501 { replace(__p.index(), __c_string); } 02502 02503 void 02504 replace(const iterator& __p, const _CharT* __i, size_t __n) 02505 { replace(__p.index(), __i, __n); } 02506 02507 void 02508 replace(const iterator& __p, const _CharT* __i, const _CharT* __j) 02509 { replace(__p.index(), __i, __j); } 02510 02511 void 02512 replace(const iterator& __p, const_iterator __i, const_iterator __j) 02513 { replace(__p.index(), __i, __j); } 02514 02515 void 02516 replace(const iterator& __p, iterator __i, iterator __j) 02517 { replace(__p.index(), __i, __j); } 02518 02519 // Iterator and range variants of erase 02520 iterator 02521 erase(const iterator& __p, const iterator& __q) 02522 { 02523 size_t __p_index = __p.index(); 02524 erase(__p_index, __q.index() - __p_index); 02525 return iterator(this, __p_index); 02526 } 02527 02528 iterator 02529 erase(const iterator& __p) 02530 { 02531 size_t __p_index = __p.index(); 02532 erase(__p_index, 1); 02533 return iterator(this, __p_index); 02534 } 02535 02536 rope 02537 substr(size_t __start, size_t __len = 1) const 02538 { 02539 return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr, 02540 __start, 02541 __start + __len)); 02542 } 02543 02544 rope 02545 substr(iterator __start, iterator __end) const 02546 { 02547 return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr, 02548 __start.index(), 02549 __end.index())); 02550 } 02551 02552 rope 02553 substr(iterator __start) const 02554 { 02555 size_t __pos = __start.index(); 02556 return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr, 02557 __pos, __pos + 1)); 02558 } 02559 02560 rope 02561 substr(const_iterator __start, const_iterator __end) const 02562 { 02563 // This might eventually take advantage of the cache in the 02564 // iterator. 02565 return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr, 02566 __start.index(), 02567 __end.index())); 02568 } 02569 02570 rope<_CharT, _Alloc> 02571 substr(const_iterator __start) 02572 { 02573 size_t __pos = __start.index(); 02574 return rope<_CharT, _Alloc>(_S_substring(this->_M_tree_ptr, 02575 __pos, __pos + 1)); 02576 } 02577 02578 static const size_type npos; 02579 02580 size_type find(_CharT __c, size_type __pos = 0) const; 02581 02582 size_type 02583 find(const _CharT* __s, size_type __pos = 0) const 02584 { 02585 size_type __result_pos; 02586 const_iterator __result = 02587 std::search(const_begin() + __pos, const_end(), 02588 __s, __s + _S_char_ptr_len(__s)); 02589 __result_pos = __result.index(); 02590 #ifndef __STL_OLD_ROPE_SEMANTICS 02591 if (__result_pos == size()) 02592 __result_pos = npos; 02593 #endif 02594 return __result_pos; 02595 } 02596 02597 iterator 02598 mutable_begin() 02599 { return(iterator(this, 0)); } 02600 02601 iterator 02602 mutable_end() 02603 { return(iterator(this, size())); } 02604 02605 typedef std::reverse_iterator<iterator> reverse_iterator; 02606 02607 reverse_iterator 02608 mutable_rbegin() 02609 { return reverse_iterator(mutable_end()); } 02610 02611 reverse_iterator 02612 mutable_rend() 02613 { return reverse_iterator(mutable_begin()); } 02614 02615 reference 02616 mutable_reference_at(size_type __pos) 02617 { return reference(this, __pos); } 02618 02619 #ifdef __STD_STUFF 02620 reference 02621 operator[] (size_type __pos) 02622 { return _char_ref_proxy(this, __pos); } 02623 02624 reference 02625 at(size_type __pos) 02626 { 02627 // if (__pos >= size()) throw out_of_range; // XXX 02628 return (*this)[__pos]; 02629 } 02630 02631 void resize(size_type __n, _CharT __c) { } 02632 void resize(size_type __n) { } 02633 void reserve(size_type __res_arg = 0) { } 02634 02635 size_type 02636 capacity() const 02637 { return max_size(); } 02638 02639 // Stuff below this line is dangerous because it's error prone. 02640 // I would really like to get rid of it. 02641 // copy function with funny arg ordering. 02642 size_type 02643 copy(_CharT* __buffer, size_type __n, 02644 size_type __pos = 0) const 02645 { return copy(__pos, __n, __buffer); } 02646 02647 iterator 02648 end() 02649 { return mutable_end(); } 02650 02651 iterator 02652 begin() 02653 { return mutable_begin(); } 02654 02655 reverse_iterator 02656 rend() 02657 { return mutable_rend(); } 02658 02659 reverse_iterator 02660 rbegin() 02661 { return mutable_rbegin(); } 02662 02663 #else 02664 const_iterator 02665 end() 02666 { return const_end(); } 02667 02668 const_iterator 02669 begin() 02670 { return const_begin(); } 02671 02672 const_reverse_iterator 02673 rend() 02674 { return const_rend(); } 02675 02676 const_reverse_iterator 02677 rbegin() 02678 { return const_rbegin(); } 02679 02680 #endif 02681 }; 02682 02683 template <class _CharT, class _Alloc> 02684 const typename rope<_CharT, _Alloc>::size_type 02685 rope<_CharT, _Alloc>::npos = (size_type)(-1); 02686 02687 template <class _CharT, class _Alloc> 02688 inline bool operator==(const _Rope_const_iterator<_CharT, _Alloc>& __x, 02689 const _Rope_const_iterator<_CharT, _Alloc>& __y) 02690 { return (__x._M_current_pos == __y._M_current_pos 02691 && __x._M_root == __y._M_root); } 02692 02693 template <class _CharT, class _Alloc> 02694 inline bool operator<(const _Rope_const_iterator<_CharT, _Alloc>& __x, 02695 const _Rope_const_iterator<_CharT, _Alloc>& __y) 02696 { return (__x._M_current_pos < __y._M_current_pos); } 02697 02698 template <class _CharT, class _Alloc> 02699 inline bool operator!=(const _Rope_const_iterator<_CharT, _Alloc>& __x, 02700 const _Rope_const_iterator<_CharT, _Alloc>& __y) 02701 { return !(__x == __y); } 02702 02703 template <class _CharT, class _Alloc> 02704 inline bool operator>(const _Rope_const_iterator<_CharT, _Alloc>& __x, 02705 const _Rope_const_iterator<_CharT, _Alloc>& __y) 02706 { return __y < __x; } 02707 02708 template <class _CharT, class _Alloc> 02709 inline bool 02710 operator<=(const _Rope_const_iterator<_CharT, _Alloc>& __x, 02711 const _Rope_const_iterator<_CharT, _Alloc>& __y) 02712 { return !(__y < __x); } 02713 02714 template <class _CharT, class _Alloc> 02715 inline bool 02716 operator>=(const _Rope_const_iterator<_CharT, _Alloc>& __x, 02717 const _Rope_const_iterator<_CharT, _Alloc>& __y) 02718 { return !(__x < __y); } 02719 02720 template <class _CharT, class _Alloc> 02721 inline ptrdiff_t 02722 operator-(const _Rope_const_iterator<_CharT, _Alloc>& __x, 02723 const _Rope_const_iterator<_CharT, _Alloc>& __y) 02724 { return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; } 02725 02726 template <class _CharT, class _Alloc> 02727 inline _Rope_const_iterator<_CharT, _Alloc> 02728 operator-(const _Rope_const_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n) 02729 { return _Rope_const_iterator<_CharT, _Alloc>(__x._M_root, 02730 __x._M_current_pos - __n); } 02731 02732 template <class _CharT, class _Alloc> 02733 inline _Rope_const_iterator<_CharT, _Alloc> 02734 operator+(const _Rope_const_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n) 02735 { return _Rope_const_iterator<_CharT, _Alloc>(__x._M_root, 02736 __x._M_current_pos + __n); } 02737 02738 template <class _CharT, class _Alloc> 02739 inline _Rope_const_iterator<_CharT, _Alloc> 02740 operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT, _Alloc>& __x) 02741 { return _Rope_const_iterator<_CharT, _Alloc>(__x._M_root, 02742 __x._M_current_pos + __n); } 02743 02744 template <class _CharT, class _Alloc> 02745 inline bool 02746 operator==(const _Rope_iterator<_CharT, _Alloc>& __x, 02747 const _Rope_iterator<_CharT, _Alloc>& __y) 02748 {return (__x._M_current_pos == __y._M_current_pos 02749 && __x._M_root_rope == __y._M_root_rope); } 02750 02751 template <class _CharT, class _Alloc> 02752 inline bool 02753 operator<(const _Rope_iterator<_CharT, _Alloc>& __x, 02754 const _Rope_iterator<_CharT, _Alloc>& __y) 02755 { return (__x._M_current_pos < __y._M_current_pos); } 02756 02757 template <class _CharT, class _Alloc> 02758 inline bool 02759 operator!=(const _Rope_iterator<_CharT, _Alloc>& __x, 02760 const _Rope_iterator<_CharT, _Alloc>& __y) 02761 { return !(__x == __y); } 02762 02763 template <class _CharT, class _Alloc> 02764 inline bool 02765 operator>(const _Rope_iterator<_CharT, _Alloc>& __x, 02766 const _Rope_iterator<_CharT, _Alloc>& __y) 02767 { return __y < __x; } 02768 02769 template <class _CharT, class _Alloc> 02770 inline bool 02771 operator<=(const _Rope_iterator<_CharT, _Alloc>& __x, 02772 const _Rope_iterator<_CharT, _Alloc>& __y) 02773 { return !(__y < __x); } 02774 02775 template <class _CharT, class _Alloc> 02776 inline bool 02777 operator>=(const _Rope_iterator<_CharT, _Alloc>& __x, 02778 const _Rope_iterator<_CharT, _Alloc>& __y) 02779 { return !(__x < __y); } 02780 02781 template <class _CharT, class _Alloc> 02782 inline ptrdiff_t 02783 operator-(const _Rope_iterator<_CharT, _Alloc>& __x, 02784 const _Rope_iterator<_CharT, _Alloc>& __y) 02785 { return ((ptrdiff_t)__x._M_current_pos 02786 - (ptrdiff_t)__y._M_current_pos); } 02787 02788 template <class _CharT, class _Alloc> 02789 inline _Rope_iterator<_CharT, _Alloc> 02790 operator-(const _Rope_iterator<_CharT, _Alloc>& __x, 02791 ptrdiff_t __n) 02792 { return _Rope_iterator<_CharT, _Alloc>(__x._M_root_rope, 02793 __x._M_current_pos - __n); } 02794 02795 template <class _CharT, class _Alloc> 02796 inline _Rope_iterator<_CharT, _Alloc> 02797 operator+(const _Rope_iterator<_CharT, _Alloc>& __x, ptrdiff_t __n) 02798 { return _Rope_iterator<_CharT, _Alloc>(__x._M_root_rope, 02799 __x._M_current_pos + __n); } 02800 02801 template <class _CharT, class _Alloc> 02802 inline _Rope_iterator<_CharT, _Alloc> 02803 operator+(ptrdiff_t __n, const _Rope_iterator<_CharT, _Alloc>& __x) 02804 { return _Rope_iterator<_CharT, _Alloc>(__x._M_root_rope, 02805 __x._M_current_pos + __n); } 02806 02807 template <class _CharT, class _Alloc> 02808 inline rope<_CharT, _Alloc> 02809 operator+(const rope<_CharT, _Alloc>& __left, 02810 const rope<_CharT, _Alloc>& __right) 02811 { 02812 // Inlining this should make it possible to keep __left and 02813 // __right in registers. 02814 typedef rope<_CharT, _Alloc> rope_type; 02815 return rope_type(rope_type::_S_concat(__left._M_tree_ptr, 02816 __right._M_tree_ptr)); 02817 } 02818 02819 template <class _CharT, class _Alloc> 02820 inline rope<_CharT, _Alloc>& 02821 operator+=(rope<_CharT, _Alloc>& __left, 02822 const rope<_CharT, _Alloc>& __right) 02823 { 02824 __left.append(__right); 02825 return __left; 02826 } 02827 02828 template <class _CharT, class _Alloc> 02829 inline rope<_CharT, _Alloc> 02830 operator+(const rope<_CharT, _Alloc>& __left, 02831 const _CharT* __right) 02832 { 02833 typedef rope<_CharT, _Alloc> rope_type; 02834 size_t __rlen = rope_type::_S_char_ptr_len(__right); 02835 return rope_type(rope_type::_S_concat_char_iter(__left._M_tree_ptr, 02836 __right, __rlen)); 02837 } 02838 02839 template <class _CharT, class _Alloc> 02840 inline rope<_CharT, _Alloc>& 02841 operator+=(rope<_CharT, _Alloc>& __left, 02842 const _CharT* __right) 02843 { 02844 __left.append(__right); 02845 return __left; 02846 } 02847 02848 template <class _CharT, class _Alloc> 02849 inline rope<_CharT, _Alloc> 02850 operator+(const rope<_CharT, _Alloc>& __left, _CharT __right) 02851 { 02852 typedef rope<_CharT, _Alloc> rope_type; 02853 return rope_type(rope_type::_S_concat_char_iter(__left._M_tree_ptr, 02854 &__right, 1)); 02855 } 02856 02857 template <class _CharT, class _Alloc> 02858 inline rope<_CharT, _Alloc>& 02859 operator+=(rope<_CharT, _Alloc>& __left, _CharT __right) 02860 { 02861 __left.append(__right); 02862 return __left; 02863 } 02864 02865 template <class _CharT, class _Alloc> 02866 bool 02867 operator<(const rope<_CharT, _Alloc>& __left, 02868 const rope<_CharT, _Alloc>& __right) 02869 { return __left.compare(__right) < 0; } 02870 02871 template <class _CharT, class _Alloc> 02872 bool 02873 operator==(const rope<_CharT, _Alloc>& __left, 02874 const rope<_CharT, _Alloc>& __right) 02875 { return __left.compare(__right) == 0; } 02876 02877 template <class _CharT, class _Alloc> 02878 inline bool 02879 operator==(const _Rope_char_ptr_proxy<_CharT, _Alloc>& __x, 02880 const _Rope_char_ptr_proxy<_CharT, _Alloc>& __y) 02881 { return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root); } 02882 02883 template <class _CharT, class _Alloc> 02884 inline bool 02885 operator!=(const rope<_CharT, _Alloc>& __x, 02886 const rope<_CharT, _Alloc>& __y) 02887 { return !(__x == __y); } 02888 02889 template <class _CharT, class _Alloc> 02890 inline bool 02891 operator>(const rope<_CharT, _Alloc>& __x, 02892 const rope<_CharT, _Alloc>& __y) 02893 { return __y < __x; } 02894 02895 template <class _CharT, class _Alloc> 02896 inline bool 02897 operator<=(const rope<_CharT, _Alloc>& __x, 02898 const rope<_CharT, _Alloc>& __y) 02899 { return !(__y < __x); } 02900 02901 template <class _CharT, class _Alloc> 02902 inline bool 02903 operator>=(const rope<_CharT, _Alloc>& __x, 02904 const rope<_CharT, _Alloc>& __y) 02905 { return !(__x < __y); } 02906 02907 template <class _CharT, class _Alloc> 02908 inline bool 02909 operator!=(const _Rope_char_ptr_proxy<_CharT, _Alloc>& __x, 02910 const _Rope_char_ptr_proxy<_CharT, _Alloc>& __y) 02911 { return !(__x == __y); } 02912 02913 template<class _CharT, class _Traits, class _Alloc> 02914 std::basic_ostream<_CharT, _Traits>& 02915 operator<<(std::basic_ostream<_CharT, _Traits>& __o, 02916 const rope<_CharT, _Alloc>& __r); 02917 02918 typedef rope<char> crope; 02919 typedef rope<wchar_t> wrope; 02920 02921 inline crope::reference 02922 __mutable_reference_at(crope& __c, size_t __i) 02923 { return __c.mutable_reference_at(__i); } 02924 02925 inline wrope::reference 02926 __mutable_reference_at(wrope& __c, size_t __i) 02927 { return __c.mutable_reference_at(__i); } 02928 02929 template <class _CharT, class _Alloc> 02930 inline void 02931 swap(rope<_CharT, _Alloc>& __x, rope<_CharT, _Alloc>& __y) 02932 { __x.swap(__y); } 02933 02934 _GLIBCXX_END_NAMESPACE_VERSION 02935 } // namespace 02936 02937 02938 namespace std _GLIBCXX_VISIBILITY(default) 02939 { 02940 namespace tr1 02941 { 02942 _GLIBCXX_BEGIN_NAMESPACE_VERSION 02943 02944 template<> 02945 struct hash<__gnu_cxx::crope> 02946 { 02947 size_t 02948 operator()(const __gnu_cxx::crope& __str) const 02949 { 02950 size_t __size = __str.size(); 02951 if (0 == __size) 02952 return 0; 02953 return 13 * __str[0] + 5 * __str[__size - 1] + __size; 02954 } 02955 }; 02956 02957 02958 template<> 02959 struct hash<__gnu_cxx::wrope> 02960 { 02961 size_t 02962 operator()(const __gnu_cxx::wrope& __str) const 02963 { 02964 size_t __size = __str.size(); 02965 if (0 == __size) 02966 return 0; 02967 return 13 * __str[0] + 5 * __str[__size - 1] + __size; 02968 } 02969 }; 02970 02971 _GLIBCXX_END_NAMESPACE_VERSION 02972 } // namespace tr1 02973 } // namespace std 02974 02975 # include <ext/ropeimpl.h> 02976 02977 #endif