libstdc++
stl_vector.h
Go to the documentation of this file.
00001 // Vector implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001-2013 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 3, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // Under Section 7 of GPL version 3, you are granted additional
00017 // permissions described in the GCC Runtime Library Exception, version
00018 // 3.1, as published by the Free Software Foundation.
00019 
00020 // You should have received a copy of the GNU General Public License and
00021 // a copy of the GCC Runtime Library Exception along with this program;
00022 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00023 // <http://www.gnu.org/licenses/>.
00024 
00025 /*
00026  *
00027  * Copyright (c) 1994
00028  * Hewlett-Packard Company
00029  *
00030  * Permission to use, copy, modify, distribute and sell this software
00031  * and its documentation for any purpose is hereby granted without fee,
00032  * provided that the above copyright notice appear in all copies and
00033  * that both that copyright notice and this permission notice appear
00034  * in supporting documentation.  Hewlett-Packard Company makes no
00035  * representations about the suitability of this software for any
00036  * purpose.  It is provided "as is" without express or implied warranty.
00037  *
00038  *
00039  * Copyright (c) 1996
00040  * Silicon Graphics Computer Systems, Inc.
00041  *
00042  * Permission to use, copy, modify, distribute and sell this software
00043  * and its documentation for any purpose is hereby granted without fee,
00044  * provided that the above copyright notice appear in all copies and
00045  * that both that copyright notice and this permission notice appear
00046  * in supporting documentation.  Silicon Graphics makes no
00047  * representations about the suitability of this  software for any
00048  * purpose.  It is provided "as is" without express or implied warranty.
00049  */
00050 
00051 /** @file bits/stl_vector.h
00052  *  This is an internal header file, included by other library headers.
00053  *  Do not attempt to use it directly. @headername{vector}
00054  */
00055 
00056 #ifndef _STL_VECTOR_H
00057 #define _STL_VECTOR_H 1
00058 
00059 #include <bits/stl_iterator_base_funcs.h>
00060 #include <bits/functexcept.h>
00061 #include <bits/concept_check.h>
00062 #if __cplusplus >= 201103L
00063 #include <initializer_list>
00064 #endif
00065 
00066 namespace std _GLIBCXX_VISIBILITY(default)
00067 {
00068 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
00069 
00070   /// See bits/stl_deque.h's _Deque_base for an explanation.
00071   template<typename _Tp, typename _Alloc>
00072     struct _Vector_base
00073     {
00074       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
00075         rebind<_Tp>::other _Tp_alloc_type;
00076       typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
00077         pointer;
00078 
00079       struct _Vector_impl 
00080       : public _Tp_alloc_type
00081       {
00082     pointer _M_start;
00083     pointer _M_finish;
00084     pointer _M_end_of_storage;
00085 
00086     _Vector_impl()
00087     : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
00088     { }
00089 
00090     _Vector_impl(_Tp_alloc_type const& __a)
00091     : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
00092     { }
00093 
00094 #if __cplusplus >= 201103L
00095     _Vector_impl(_Tp_alloc_type&& __a)
00096     : _Tp_alloc_type(std::move(__a)),
00097       _M_start(0), _M_finish(0), _M_end_of_storage(0)
00098     { }
00099 #endif
00100 
00101     void _M_swap_data(_Vector_impl& __x)
00102     {
00103       std::swap(_M_start, __x._M_start);
00104       std::swap(_M_finish, __x._M_finish);
00105       std::swap(_M_end_of_storage, __x._M_end_of_storage);
00106     }
00107       };
00108       
00109     public:
00110       typedef _Alloc allocator_type;
00111 
00112       _Tp_alloc_type&
00113       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
00114       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
00115 
00116       const _Tp_alloc_type&
00117       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
00118       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
00119 
00120       allocator_type
00121       get_allocator() const _GLIBCXX_NOEXCEPT
00122       { return allocator_type(_M_get_Tp_allocator()); }
00123 
00124       _Vector_base()
00125       : _M_impl() { }
00126 
00127       _Vector_base(const allocator_type& __a)
00128       : _M_impl(__a) { }
00129 
00130       _Vector_base(size_t __n)
00131       : _M_impl()
00132       { _M_create_storage(__n); }
00133 
00134       _Vector_base(size_t __n, const allocator_type& __a)
00135       : _M_impl(__a)
00136       { _M_create_storage(__n); }
00137 
00138 #if __cplusplus >= 201103L
00139       _Vector_base(_Tp_alloc_type&& __a)
00140       : _M_impl(std::move(__a)) { }
00141 
00142       _Vector_base(_Vector_base&& __x)
00143       : _M_impl(std::move(__x._M_get_Tp_allocator()))
00144       { this->_M_impl._M_swap_data(__x._M_impl); }
00145 
00146       _Vector_base(_Vector_base&& __x, const allocator_type& __a)
00147       : _M_impl(__a)
00148       {
00149     if (__x.get_allocator() == __a)
00150       this->_M_impl._M_swap_data(__x._M_impl);
00151     else
00152       {
00153         size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
00154         _M_create_storage(__n);
00155       }
00156       }
00157 #endif
00158 
00159       ~_Vector_base()
00160       { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
00161               - this->_M_impl._M_start); }
00162 
00163     public:
00164       _Vector_impl _M_impl;
00165 
00166       pointer
00167       _M_allocate(size_t __n)
00168       { return __n != 0 ? _M_impl.allocate(__n) : 0; }
00169 
00170       void
00171       _M_deallocate(pointer __p, size_t __n)
00172       {
00173     if (__p)
00174       _M_impl.deallocate(__p, __n);
00175       }
00176 
00177     private:
00178       void
00179       _M_create_storage(size_t __n)
00180       {
00181     this->_M_impl._M_start = this->_M_allocate(__n);
00182     this->_M_impl._M_finish = this->_M_impl._M_start;
00183     this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
00184       }
00185     };
00186 
00187 
00188   /**
00189    *  @brief A standard container which offers fixed time access to
00190    *  individual elements in any order.
00191    *
00192    *  @ingroup sequences
00193    *
00194    *  @tparam _Tp  Type of element.
00195    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
00196    *
00197    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00198    *  <a href="tables.html#66">reversible container</a>, and a
00199    *  <a href="tables.html#67">sequence</a>, including the
00200    *  <a href="tables.html#68">optional sequence requirements</a> with the
00201    *  %exception of @c push_front and @c pop_front.
00202    *
00203    *  In some terminology a %vector can be described as a dynamic
00204    *  C-style array, it offers fast and efficient access to individual
00205    *  elements in any order and saves the user from worrying about
00206    *  memory and size allocation.  Subscripting ( @c [] ) access is
00207    *  also provided as with C-style arrays.
00208   */
00209   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
00210     class vector : protected _Vector_base<_Tp, _Alloc>
00211     {
00212       // Concept requirements.
00213       typedef typename _Alloc::value_type                _Alloc_value_type;
00214       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00215       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
00216       
00217       typedef _Vector_base<_Tp, _Alloc>          _Base;
00218       typedef typename _Base::_Tp_alloc_type         _Tp_alloc_type;
00219       typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>  _Alloc_traits;
00220 
00221     public:
00222       typedef _Tp                    value_type;
00223       typedef typename _Base::pointer                    pointer;
00224       typedef typename _Alloc_traits::const_pointer      const_pointer;
00225       typedef typename _Alloc_traits::reference          reference;
00226       typedef typename _Alloc_traits::const_reference    const_reference;
00227       typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
00228       typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
00229       const_iterator;
00230       typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
00231       typedef std::reverse_iterator<iterator>        reverse_iterator;
00232       typedef size_t                     size_type;
00233       typedef ptrdiff_t                  difference_type;
00234       typedef _Alloc                                 allocator_type;
00235 
00236     protected:
00237       using _Base::_M_allocate;
00238       using _Base::_M_deallocate;
00239       using _Base::_M_impl;
00240       using _Base::_M_get_Tp_allocator;
00241 
00242     public:
00243       // [23.2.4.1] construct/copy/destroy
00244       // (assign() and get_allocator() are also listed in this section)
00245       /**
00246        *  @brief  Default constructor creates no elements.
00247        */
00248       vector()
00249       : _Base() { }
00250 
00251       /**
00252        *  @brief  Creates a %vector with no elements.
00253        *  @param  __a  An allocator object.
00254        */
00255       explicit
00256       vector(const allocator_type& __a)
00257       : _Base(__a) { }
00258 
00259 #if __cplusplus >= 201103L
00260       /**
00261        *  @brief  Creates a %vector with default constructed elements.
00262        *  @param  __n  The number of elements to initially create.
00263        *  @param  __a  An allocator.
00264        *
00265        *  This constructor fills the %vector with @a __n default
00266        *  constructed elements.
00267        */
00268       explicit
00269       vector(size_type __n, const allocator_type& __a = allocator_type())
00270       : _Base(__n, __a)
00271       { _M_default_initialize(__n); }
00272 
00273       /**
00274        *  @brief  Creates a %vector with copies of an exemplar element.
00275        *  @param  __n  The number of elements to initially create.
00276        *  @param  __value  An element to copy.
00277        *  @param  __a  An allocator.
00278        *
00279        *  This constructor fills the %vector with @a __n copies of @a __value.
00280        */
00281       vector(size_type __n, const value_type& __value,
00282          const allocator_type& __a = allocator_type())
00283       : _Base(__n, __a)
00284       { _M_fill_initialize(__n, __value); }
00285 #else
00286       /**
00287        *  @brief  Creates a %vector with copies of an exemplar element.
00288        *  @param  __n  The number of elements to initially create.
00289        *  @param  __value  An element to copy.
00290        *  @param  __a  An allocator.
00291        *
00292        *  This constructor fills the %vector with @a __n copies of @a __value.
00293        */
00294       explicit
00295       vector(size_type __n, const value_type& __value = value_type(),
00296          const allocator_type& __a = allocator_type())
00297       : _Base(__n, __a)
00298       { _M_fill_initialize(__n, __value); }
00299 #endif
00300 
00301       /**
00302        *  @brief  %Vector copy constructor.
00303        *  @param  __x  A %vector of identical element and allocator types.
00304        *
00305        *  The newly-created %vector uses a copy of the allocation
00306        *  object used by @a __x.  All the elements of @a __x are copied,
00307        *  but any extra memory in
00308        *  @a __x (for fast expansion) will not be copied.
00309        */
00310       vector(const vector& __x)
00311       : _Base(__x.size(),
00312         _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
00313       { this->_M_impl._M_finish =
00314       std::__uninitialized_copy_a(__x.begin(), __x.end(),
00315                       this->_M_impl._M_start,
00316                       _M_get_Tp_allocator());
00317       }
00318 
00319 #if __cplusplus >= 201103L
00320       /**
00321        *  @brief  %Vector move constructor.
00322        *  @param  __x  A %vector of identical element and allocator types.
00323        *
00324        *  The newly-created %vector contains the exact contents of @a __x.
00325        *  The contents of @a __x are a valid, but unspecified %vector.
00326        */
00327       vector(vector&& __x) noexcept
00328       : _Base(std::move(__x)) { }
00329 
00330       /// Copy constructor with alternative allocator
00331       vector(const vector& __x, const allocator_type& __a)
00332       : _Base(__x.size(), __a)
00333       { this->_M_impl._M_finish =
00334       std::__uninitialized_copy_a(__x.begin(), __x.end(),
00335                       this->_M_impl._M_start,
00336                       _M_get_Tp_allocator());
00337       }
00338 
00339       /// Move constructor with alternative allocator
00340       vector(vector&& __rv, const allocator_type& __m)
00341       : _Base(std::move(__rv), __m)
00342       {
00343     if (__rv.get_allocator() != __m)
00344       {
00345         this->_M_impl._M_finish =
00346           std::__uninitialized_move_a(__rv.begin(), __rv.end(),
00347                       this->_M_impl._M_start,
00348                       _M_get_Tp_allocator());
00349         __rv.clear();
00350       }
00351       }
00352 
00353       /**
00354        *  @brief  Builds a %vector from an initializer list.
00355        *  @param  __l  An initializer_list.
00356        *  @param  __a  An allocator.
00357        *
00358        *  Create a %vector consisting of copies of the elements in the
00359        *  initializer_list @a __l.
00360        *
00361        *  This will call the element type's copy constructor N times
00362        *  (where N is @a __l.size()) and do no memory reallocation.
00363        */
00364       vector(initializer_list<value_type> __l,
00365          const allocator_type& __a = allocator_type())
00366       : _Base(__a)
00367       {
00368     _M_range_initialize(__l.begin(), __l.end(),
00369                 random_access_iterator_tag());
00370       }
00371 #endif
00372 
00373       /**
00374        *  @brief  Builds a %vector from a range.
00375        *  @param  __first  An input iterator.
00376        *  @param  __last  An input iterator.
00377        *  @param  __a  An allocator.
00378        *
00379        *  Create a %vector consisting of copies of the elements from
00380        *  [first,last).
00381        *
00382        *  If the iterators are forward, bidirectional, or
00383        *  random-access, then this will call the elements' copy
00384        *  constructor N times (where N is distance(first,last)) and do
00385        *  no memory reallocation.  But if only input iterators are
00386        *  used, then this will do at most 2N calls to the copy
00387        *  constructor, and logN memory reallocations.
00388        */
00389 #if __cplusplus >= 201103L
00390       template<typename _InputIterator,
00391            typename = std::_RequireInputIter<_InputIterator>>
00392         vector(_InputIterator __first, _InputIterator __last,
00393            const allocator_type& __a = allocator_type())
00394     : _Base(__a)
00395         { _M_initialize_dispatch(__first, __last, __false_type()); }
00396 #else
00397       template<typename _InputIterator>
00398         vector(_InputIterator __first, _InputIterator __last,
00399            const allocator_type& __a = allocator_type())
00400     : _Base(__a)
00401         {
00402       // Check whether it's an integral type.  If so, it's not an iterator.
00403       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00404       _M_initialize_dispatch(__first, __last, _Integral());
00405     }
00406 #endif
00407 
00408       /**
00409        *  The dtor only erases the elements, and note that if the
00410        *  elements themselves are pointers, the pointed-to memory is
00411        *  not touched in any way.  Managing the pointer is the user's
00412        *  responsibility.
00413        */
00414       ~vector() _GLIBCXX_NOEXCEPT
00415       { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
00416               _M_get_Tp_allocator()); }
00417 
00418       /**
00419        *  @brief  %Vector assignment operator.
00420        *  @param  __x  A %vector of identical element and allocator types.
00421        *
00422        *  All the elements of @a __x are copied, but any extra memory in
00423        *  @a __x (for fast expansion) will not be copied.  Unlike the
00424        *  copy constructor, the allocator object is not copied.
00425        */
00426       vector&
00427       operator=(const vector& __x);
00428 
00429 #if __cplusplus >= 201103L
00430       /**
00431        *  @brief  %Vector move assignment operator.
00432        *  @param  __x  A %vector of identical element and allocator types.
00433        *
00434        *  The contents of @a __x are moved into this %vector (without copying,
00435        *  if the allocators permit it).
00436        *  @a __x is a valid, but unspecified %vector.
00437        */
00438       vector&
00439       operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
00440       {
00441         constexpr bool __move_storage =
00442           _Alloc_traits::_S_propagate_on_move_assign()
00443           || _Alloc_traits::_S_always_equal();
00444         _M_move_assign(std::move(__x),
00445                        integral_constant<bool, __move_storage>());
00446     return *this;
00447       }
00448 
00449       /**
00450        *  @brief  %Vector list assignment operator.
00451        *  @param  __l  An initializer_list.
00452        *
00453        *  This function fills a %vector with copies of the elements in the
00454        *  initializer list @a __l.
00455        *
00456        *  Note that the assignment completely changes the %vector and
00457        *  that the resulting %vector's size is the same as the number
00458        *  of elements assigned.  Old data may be lost.
00459        */
00460       vector&
00461       operator=(initializer_list<value_type> __l)
00462       {
00463     this->assign(__l.begin(), __l.end());
00464     return *this;
00465       }
00466 #endif
00467 
00468       /**
00469        *  @brief  Assigns a given value to a %vector.
00470        *  @param  __n  Number of elements to be assigned.
00471        *  @param  __val  Value to be assigned.
00472        *
00473        *  This function fills a %vector with @a __n copies of the given
00474        *  value.  Note that the assignment completely changes the
00475        *  %vector and that the resulting %vector's size is the same as
00476        *  the number of elements assigned.  Old data may be lost.
00477        */
00478       void
00479       assign(size_type __n, const value_type& __val)
00480       { _M_fill_assign(__n, __val); }
00481 
00482       /**
00483        *  @brief  Assigns a range to a %vector.
00484        *  @param  __first  An input iterator.
00485        *  @param  __last   An input iterator.
00486        *
00487        *  This function fills a %vector with copies of the elements in the
00488        *  range [__first,__last).
00489        *
00490        *  Note that the assignment completely changes the %vector and
00491        *  that the resulting %vector's size is the same as the number
00492        *  of elements assigned.  Old data may be lost.
00493        */
00494 #if __cplusplus >= 201103L
00495       template<typename _InputIterator,
00496            typename = std::_RequireInputIter<_InputIterator>>
00497         void
00498         assign(_InputIterator __first, _InputIterator __last)
00499         { _M_assign_dispatch(__first, __last, __false_type()); }
00500 #else
00501       template<typename _InputIterator>
00502         void
00503         assign(_InputIterator __first, _InputIterator __last)
00504         {
00505       // Check whether it's an integral type.  If so, it's not an iterator.
00506       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00507       _M_assign_dispatch(__first, __last, _Integral());
00508     }
00509 #endif
00510 
00511 #if __cplusplus >= 201103L
00512       /**
00513        *  @brief  Assigns an initializer list to a %vector.
00514        *  @param  __l  An initializer_list.
00515        *
00516        *  This function fills a %vector with copies of the elements in the
00517        *  initializer list @a __l.
00518        *
00519        *  Note that the assignment completely changes the %vector and
00520        *  that the resulting %vector's size is the same as the number
00521        *  of elements assigned.  Old data may be lost.
00522        */
00523       void
00524       assign(initializer_list<value_type> __l)
00525       { this->assign(__l.begin(), __l.end()); }
00526 #endif
00527 
00528       /// Get a copy of the memory allocation object.
00529       using _Base::get_allocator;
00530 
00531       // iterators
00532       /**
00533        *  Returns a read/write iterator that points to the first
00534        *  element in the %vector.  Iteration is done in ordinary
00535        *  element order.
00536        */
00537       iterator
00538       begin() _GLIBCXX_NOEXCEPT
00539       { return iterator(this->_M_impl._M_start); }
00540 
00541       /**
00542        *  Returns a read-only (constant) iterator that points to the
00543        *  first element in the %vector.  Iteration is done in ordinary
00544        *  element order.
00545        */
00546       const_iterator
00547       begin() const _GLIBCXX_NOEXCEPT
00548       { return const_iterator(this->_M_impl._M_start); }
00549 
00550       /**
00551        *  Returns a read/write iterator that points one past the last
00552        *  element in the %vector.  Iteration is done in ordinary
00553        *  element order.
00554        */
00555       iterator
00556       end() _GLIBCXX_NOEXCEPT
00557       { return iterator(this->_M_impl._M_finish); }
00558 
00559       /**
00560        *  Returns a read-only (constant) iterator that points one past
00561        *  the last element in the %vector.  Iteration is done in
00562        *  ordinary element order.
00563        */
00564       const_iterator
00565       end() const _GLIBCXX_NOEXCEPT
00566       { return const_iterator(this->_M_impl._M_finish); }
00567 
00568       /**
00569        *  Returns a read/write reverse iterator that points to the
00570        *  last element in the %vector.  Iteration is done in reverse
00571        *  element order.
00572        */
00573       reverse_iterator
00574       rbegin() _GLIBCXX_NOEXCEPT
00575       { return reverse_iterator(end()); }
00576 
00577       /**
00578        *  Returns a read-only (constant) reverse iterator that points
00579        *  to the last element in the %vector.  Iteration is done in
00580        *  reverse element order.
00581        */
00582       const_reverse_iterator
00583       rbegin() const _GLIBCXX_NOEXCEPT
00584       { return const_reverse_iterator(end()); }
00585 
00586       /**
00587        *  Returns a read/write reverse iterator that points to one
00588        *  before the first element in the %vector.  Iteration is done
00589        *  in reverse element order.
00590        */
00591       reverse_iterator
00592       rend() _GLIBCXX_NOEXCEPT
00593       { return reverse_iterator(begin()); }
00594 
00595       /**
00596        *  Returns a read-only (constant) reverse iterator that points
00597        *  to one before the first element in the %vector.  Iteration
00598        *  is done in reverse element order.
00599        */
00600       const_reverse_iterator
00601       rend() const _GLIBCXX_NOEXCEPT
00602       { return const_reverse_iterator(begin()); }
00603 
00604 #if __cplusplus >= 201103L
00605       /**
00606        *  Returns a read-only (constant) iterator that points to the
00607        *  first element in the %vector.  Iteration is done in ordinary
00608        *  element order.
00609        */
00610       const_iterator
00611       cbegin() const noexcept
00612       { return const_iterator(this->_M_impl._M_start); }
00613 
00614       /**
00615        *  Returns a read-only (constant) iterator that points one past
00616        *  the last element in the %vector.  Iteration is done in
00617        *  ordinary element order.
00618        */
00619       const_iterator
00620       cend() const noexcept
00621       { return const_iterator(this->_M_impl._M_finish); }
00622 
00623       /**
00624        *  Returns a read-only (constant) reverse iterator that points
00625        *  to the last element in the %vector.  Iteration is done in
00626        *  reverse element order.
00627        */
00628       const_reverse_iterator
00629       crbegin() const noexcept
00630       { return const_reverse_iterator(end()); }
00631 
00632       /**
00633        *  Returns a read-only (constant) reverse iterator that points
00634        *  to one before the first element in the %vector.  Iteration
00635        *  is done in reverse element order.
00636        */
00637       const_reverse_iterator
00638       crend() const noexcept
00639       { return const_reverse_iterator(begin()); }
00640 #endif
00641 
00642       // [23.2.4.2] capacity
00643       /**  Returns the number of elements in the %vector.  */
00644       size_type
00645       size() const _GLIBCXX_NOEXCEPT
00646       { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
00647 
00648       /**  Returns the size() of the largest possible %vector.  */
00649       size_type
00650       max_size() const _GLIBCXX_NOEXCEPT
00651       { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
00652 
00653 #if __cplusplus >= 201103L
00654       /**
00655        *  @brief  Resizes the %vector to the specified number of elements.
00656        *  @param  __new_size  Number of elements the %vector should contain.
00657        *
00658        *  This function will %resize the %vector to the specified
00659        *  number of elements.  If the number is smaller than the
00660        *  %vector's current size the %vector is truncated, otherwise
00661        *  default constructed elements are appended.
00662        */
00663       void
00664       resize(size_type __new_size)
00665       {
00666     if (__new_size > size())
00667       _M_default_append(__new_size - size());
00668     else if (__new_size < size())
00669       _M_erase_at_end(this->_M_impl._M_start + __new_size);
00670       }
00671 
00672       /**
00673        *  @brief  Resizes the %vector to the specified number of elements.
00674        *  @param  __new_size  Number of elements the %vector should contain.
00675        *  @param  __x  Data with which new elements should be populated.
00676        *
00677        *  This function will %resize the %vector to the specified
00678        *  number of elements.  If the number is smaller than the
00679        *  %vector's current size the %vector is truncated, otherwise
00680        *  the %vector is extended and new elements are populated with
00681        *  given data.
00682        */
00683       void
00684       resize(size_type __new_size, const value_type& __x)
00685       {
00686     if (__new_size > size())
00687       insert(end(), __new_size - size(), __x);
00688     else if (__new_size < size())
00689       _M_erase_at_end(this->_M_impl._M_start + __new_size);
00690       }
00691 #else
00692       /**
00693        *  @brief  Resizes the %vector to the specified number of elements.
00694        *  @param  __new_size  Number of elements the %vector should contain.
00695        *  @param  __x  Data with which new elements should be populated.
00696        *
00697        *  This function will %resize the %vector to the specified
00698        *  number of elements.  If the number is smaller than the
00699        *  %vector's current size the %vector is truncated, otherwise
00700        *  the %vector is extended and new elements are populated with
00701        *  given data.
00702        */
00703       void
00704       resize(size_type __new_size, value_type __x = value_type())
00705       {
00706     if (__new_size > size())
00707       insert(end(), __new_size - size(), __x);
00708     else if (__new_size < size())
00709       _M_erase_at_end(this->_M_impl._M_start + __new_size);
00710       }
00711 #endif
00712 
00713 #if __cplusplus >= 201103L
00714       /**  A non-binding request to reduce capacity() to size().  */
00715       void
00716       shrink_to_fit()
00717       { _M_shrink_to_fit(); }
00718 #endif
00719 
00720       /**
00721        *  Returns the total number of elements that the %vector can
00722        *  hold before needing to allocate more memory.
00723        */
00724       size_type
00725       capacity() const _GLIBCXX_NOEXCEPT
00726       { return size_type(this->_M_impl._M_end_of_storage
00727              - this->_M_impl._M_start); }
00728 
00729       /**
00730        *  Returns true if the %vector is empty.  (Thus begin() would
00731        *  equal end().)
00732        */
00733       bool
00734       empty() const _GLIBCXX_NOEXCEPT
00735       { return begin() == end(); }
00736 
00737       /**
00738        *  @brief  Attempt to preallocate enough memory for specified number of
00739        *          elements.
00740        *  @param  __n  Number of elements required.
00741        *  @throw  std::length_error  If @a n exceeds @c max_size().
00742        *
00743        *  This function attempts to reserve enough memory for the
00744        *  %vector to hold the specified number of elements.  If the
00745        *  number requested is more than max_size(), length_error is
00746        *  thrown.
00747        *
00748        *  The advantage of this function is that if optimal code is a
00749        *  necessity and the user can determine the number of elements
00750        *  that will be required, the user can reserve the memory in
00751        *  %advance, and thus prevent a possible reallocation of memory
00752        *  and copying of %vector data.
00753        */
00754       void
00755       reserve(size_type __n);
00756 
00757       // element access
00758       /**
00759        *  @brief  Subscript access to the data contained in the %vector.
00760        *  @param __n The index of the element for which data should be
00761        *  accessed.
00762        *  @return  Read/write reference to data.
00763        *
00764        *  This operator allows for easy, array-style, data access.
00765        *  Note that data access with this operator is unchecked and
00766        *  out_of_range lookups are not defined. (For checked lookups
00767        *  see at().)
00768        */
00769       reference
00770       operator[](size_type __n)
00771       { return *(this->_M_impl._M_start + __n); }
00772 
00773       /**
00774        *  @brief  Subscript access to the data contained in the %vector.
00775        *  @param __n The index of the element for which data should be
00776        *  accessed.
00777        *  @return  Read-only (constant) reference to data.
00778        *
00779        *  This operator allows for easy, array-style, data access.
00780        *  Note that data access with this operator is unchecked and
00781        *  out_of_range lookups are not defined. (For checked lookups
00782        *  see at().)
00783        */
00784       const_reference
00785       operator[](size_type __n) const
00786       { return *(this->_M_impl._M_start + __n); }
00787 
00788     protected:
00789       /// Safety check used only from at().
00790       void
00791       _M_range_check(size_type __n) const
00792       {
00793     if (__n >= this->size())
00794       __throw_out_of_range(__N("vector::_M_range_check"));
00795       }
00796 
00797     public:
00798       /**
00799        *  @brief  Provides access to the data contained in the %vector.
00800        *  @param __n The index of the element for which data should be
00801        *  accessed.
00802        *  @return  Read/write reference to data.
00803        *  @throw  std::out_of_range  If @a __n is an invalid index.
00804        *
00805        *  This function provides for safer data access.  The parameter
00806        *  is first checked that it is in the range of the vector.  The
00807        *  function throws out_of_range if the check fails.
00808        */
00809       reference
00810       at(size_type __n)
00811       {
00812     _M_range_check(__n);
00813     return (*this)[__n]; 
00814       }
00815 
00816       /**
00817        *  @brief  Provides access to the data contained in the %vector.
00818        *  @param __n The index of the element for which data should be
00819        *  accessed.
00820        *  @return  Read-only (constant) reference to data.
00821        *  @throw  std::out_of_range  If @a __n is an invalid index.
00822        *
00823        *  This function provides for safer data access.  The parameter
00824        *  is first checked that it is in the range of the vector.  The
00825        *  function throws out_of_range if the check fails.
00826        */
00827       const_reference
00828       at(size_type __n) const
00829       {
00830     _M_range_check(__n);
00831     return (*this)[__n];
00832       }
00833 
00834       /**
00835        *  Returns a read/write reference to the data at the first
00836        *  element of the %vector.
00837        */
00838       reference
00839       front()
00840       { return *begin(); }
00841 
00842       /**
00843        *  Returns a read-only (constant) reference to the data at the first
00844        *  element of the %vector.
00845        */
00846       const_reference
00847       front() const
00848       { return *begin(); }
00849 
00850       /**
00851        *  Returns a read/write reference to the data at the last
00852        *  element of the %vector.
00853        */
00854       reference
00855       back()
00856       { return *(end() - 1); }
00857       
00858       /**
00859        *  Returns a read-only (constant) reference to the data at the
00860        *  last element of the %vector.
00861        */
00862       const_reference
00863       back() const
00864       { return *(end() - 1); }
00865 
00866       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00867       // DR 464. Suggestion for new member functions in standard containers.
00868       // data access
00869       /**
00870        *   Returns a pointer such that [data(), data() + size()) is a valid
00871        *   range.  For a non-empty %vector, data() == &front().
00872        */
00873 #if __cplusplus >= 201103L
00874       _Tp*
00875 #else
00876       pointer
00877 #endif
00878       data() _GLIBCXX_NOEXCEPT
00879       { return std::__addressof(front()); }
00880 
00881 #if __cplusplus >= 201103L
00882       const _Tp*
00883 #else
00884       const_pointer
00885 #endif
00886       data() const _GLIBCXX_NOEXCEPT
00887       { return std::__addressof(front()); }
00888 
00889       // [23.2.4.3] modifiers
00890       /**
00891        *  @brief  Add data to the end of the %vector.
00892        *  @param  __x  Data to be added.
00893        *
00894        *  This is a typical stack operation.  The function creates an
00895        *  element at the end of the %vector and assigns the given data
00896        *  to it.  Due to the nature of a %vector this operation can be
00897        *  done in constant time if the %vector has preallocated space
00898        *  available.
00899        */
00900       void
00901       push_back(const value_type& __x)
00902       {
00903     if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
00904       {
00905         _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
00906                                  __x);
00907         ++this->_M_impl._M_finish;
00908       }
00909     else
00910 #if __cplusplus >= 201103L
00911       _M_emplace_back_aux(__x);
00912 #else
00913       _M_insert_aux(end(), __x);
00914 #endif
00915       }
00916 
00917 #if __cplusplus >= 201103L
00918       void
00919       push_back(value_type&& __x)
00920       { emplace_back(std::move(__x)); }
00921 
00922       template<typename... _Args>
00923         void
00924         emplace_back(_Args&&... __args);
00925 #endif
00926 
00927       /**
00928        *  @brief  Removes last element.
00929        *
00930        *  This is a typical stack operation. It shrinks the %vector by one.
00931        *
00932        *  Note that no data is returned, and if the last element's
00933        *  data is needed, it should be retrieved before pop_back() is
00934        *  called.
00935        */
00936       void
00937       pop_back()
00938       {
00939     --this->_M_impl._M_finish;
00940     _Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
00941       }
00942 
00943 #if __cplusplus >= 201103L
00944       /**
00945        *  @brief  Inserts an object in %vector before specified iterator.
00946        *  @param  __position  An iterator into the %vector.
00947        *  @param  __args  Arguments.
00948        *  @return  An iterator that points to the inserted data.
00949        *
00950        *  This function will insert an object of type T constructed
00951        *  with T(std::forward<Args>(args)...) before the specified location.
00952        *  Note that this kind of operation could be expensive for a %vector
00953        *  and if it is frequently used the user should consider using
00954        *  std::list.
00955        */
00956       template<typename... _Args>
00957         iterator
00958         emplace(iterator __position, _Args&&... __args);
00959 #endif
00960 
00961       /**
00962        *  @brief  Inserts given value into %vector before specified iterator.
00963        *  @param  __position  An iterator into the %vector.
00964        *  @param  __x  Data to be inserted.
00965        *  @return  An iterator that points to the inserted data.
00966        *
00967        *  This function will insert a copy of the given value before
00968        *  the specified location.  Note that this kind of operation
00969        *  could be expensive for a %vector and if it is frequently
00970        *  used the user should consider using std::list.
00971        */
00972       iterator
00973       insert(iterator __position, const value_type& __x);
00974 
00975 #if __cplusplus >= 201103L
00976       /**
00977        *  @brief  Inserts given rvalue into %vector before specified iterator.
00978        *  @param  __position  An iterator into the %vector.
00979        *  @param  __x  Data to be inserted.
00980        *  @return  An iterator that points to the inserted data.
00981        *
00982        *  This function will insert a copy of the given rvalue before
00983        *  the specified location.  Note that this kind of operation
00984        *  could be expensive for a %vector and if it is frequently
00985        *  used the user should consider using std::list.
00986        */
00987       iterator
00988       insert(iterator __position, value_type&& __x)
00989       { return emplace(__position, std::move(__x)); }
00990 
00991       /**
00992        *  @brief  Inserts an initializer_list into the %vector.
00993        *  @param  __position  An iterator into the %vector.
00994        *  @param  __l  An initializer_list.
00995        *
00996        *  This function will insert copies of the data in the 
00997        *  initializer_list @a l into the %vector before the location
00998        *  specified by @a position.
00999        *
01000        *  Note that this kind of operation could be expensive for a
01001        *  %vector and if it is frequently used the user should
01002        *  consider using std::list.
01003        */
01004       void
01005       insert(iterator __position, initializer_list<value_type> __l)
01006       { this->insert(__position, __l.begin(), __l.end()); }
01007 #endif
01008 
01009       /**
01010        *  @brief  Inserts a number of copies of given data into the %vector.
01011        *  @param  __position  An iterator into the %vector.
01012        *  @param  __n  Number of elements to be inserted.
01013        *  @param  __x  Data to be inserted.
01014        *
01015        *  This function will insert a specified number of copies of
01016        *  the given data before the location specified by @a position.
01017        *
01018        *  Note that this kind of operation could be expensive for a
01019        *  %vector and if it is frequently used the user should
01020        *  consider using std::list.
01021        */
01022       void
01023       insert(iterator __position, size_type __n, const value_type& __x)
01024       { _M_fill_insert(__position, __n, __x); }
01025 
01026       /**
01027        *  @brief  Inserts a range into the %vector.
01028        *  @param  __position  An iterator into the %vector.
01029        *  @param  __first  An input iterator.
01030        *  @param  __last   An input iterator.
01031        *
01032        *  This function will insert copies of the data in the range
01033        *  [__first,__last) into the %vector before the location specified
01034        *  by @a pos.
01035        *
01036        *  Note that this kind of operation could be expensive for a
01037        *  %vector and if it is frequently used the user should
01038        *  consider using std::list.
01039        */
01040 #if __cplusplus >= 201103L
01041       template<typename _InputIterator,
01042            typename = std::_RequireInputIter<_InputIterator>>
01043         void
01044         insert(iterator __position, _InputIterator __first,
01045            _InputIterator __last)
01046         { _M_insert_dispatch(__position, __first, __last, __false_type()); }
01047 #else
01048       template<typename _InputIterator>
01049         void
01050         insert(iterator __position, _InputIterator __first,
01051            _InputIterator __last)
01052         {
01053       // Check whether it's an integral type.  If so, it's not an iterator.
01054       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
01055       _M_insert_dispatch(__position, __first, __last, _Integral());
01056     }
01057 #endif
01058 
01059       /**
01060        *  @brief  Remove element at given position.
01061        *  @param  __position  Iterator pointing to element to be erased.
01062        *  @return  An iterator pointing to the next element (or end()).
01063        *
01064        *  This function will erase the element at the given position and thus
01065        *  shorten the %vector by one.
01066        *
01067        *  Note This operation could be expensive and if it is
01068        *  frequently used the user should consider using std::list.
01069        *  The user is also cautioned that this function only erases
01070        *  the element, and that if the element is itself a pointer,
01071        *  the pointed-to memory is not touched in any way.  Managing
01072        *  the pointer is the user's responsibility.
01073        */
01074       iterator
01075       erase(iterator __position);
01076 
01077       /**
01078        *  @brief  Remove a range of elements.
01079        *  @param  __first  Iterator pointing to the first element to be erased.
01080        *  @param  __last  Iterator pointing to one past the last element to be
01081        *                  erased.
01082        *  @return  An iterator pointing to the element pointed to by @a __last
01083        *           prior to erasing (or end()).
01084        *
01085        *  This function will erase the elements in the range
01086        *  [__first,__last) and shorten the %vector accordingly.
01087        *
01088        *  Note This operation could be expensive and if it is
01089        *  frequently used the user should consider using std::list.
01090        *  The user is also cautioned that this function only erases
01091        *  the elements, and that if the elements themselves are
01092        *  pointers, the pointed-to memory is not touched in any way.
01093        *  Managing the pointer is the user's responsibility.
01094        */
01095       iterator
01096       erase(iterator __first, iterator __last);
01097 
01098       /**
01099        *  @brief  Swaps data with another %vector.
01100        *  @param  __x  A %vector of the same element and allocator types.
01101        *
01102        *  This exchanges the elements between two vectors in constant time.
01103        *  (Three pointers, so it should be quite fast.)
01104        *  Note that the global std::swap() function is specialized such that
01105        *  std::swap(v1,v2) will feed to this function.
01106        */
01107       void
01108       swap(vector& __x)
01109 #if __cplusplus >= 201103L
01110             noexcept(_Alloc_traits::_S_nothrow_swap())
01111 #endif
01112       {
01113     this->_M_impl._M_swap_data(__x._M_impl);
01114     _Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
01115                               __x._M_get_Tp_allocator());
01116       }
01117 
01118       /**
01119        *  Erases all the elements.  Note that this function only erases the
01120        *  elements, and that if the elements themselves are pointers, the
01121        *  pointed-to memory is not touched in any way.  Managing the pointer is
01122        *  the user's responsibility.
01123        */
01124       void
01125       clear() _GLIBCXX_NOEXCEPT
01126       { _M_erase_at_end(this->_M_impl._M_start); }
01127 
01128     protected:
01129       /**
01130        *  Memory expansion handler.  Uses the member allocation function to
01131        *  obtain @a n bytes of memory, and then copies [first,last) into it.
01132        */
01133       template<typename _ForwardIterator>
01134         pointer
01135         _M_allocate_and_copy(size_type __n,
01136                  _ForwardIterator __first, _ForwardIterator __last)
01137         {
01138       pointer __result = this->_M_allocate(__n);
01139       __try
01140         {
01141           std::__uninitialized_copy_a(__first, __last, __result,
01142                       _M_get_Tp_allocator());
01143           return __result;
01144         }
01145       __catch(...)
01146         {
01147           _M_deallocate(__result, __n);
01148           __throw_exception_again;
01149         }
01150     }
01151 
01152 
01153       // Internal constructor functions follow.
01154 
01155       // Called by the range constructor to implement [23.1.1]/9
01156 
01157       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01158       // 438. Ambiguity in the "do the right thing" clause
01159       template<typename _Integer>
01160         void
01161         _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
01162         {
01163       this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
01164       this->_M_impl._M_end_of_storage =
01165         this->_M_impl._M_start + static_cast<size_type>(__n);
01166       _M_fill_initialize(static_cast<size_type>(__n), __value);
01167     }
01168 
01169       // Called by the range constructor to implement [23.1.1]/9
01170       template<typename _InputIterator>
01171         void
01172         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
01173                    __false_type)
01174         {
01175       typedef typename std::iterator_traits<_InputIterator>::
01176         iterator_category _IterCategory;
01177       _M_range_initialize(__first, __last, _IterCategory());
01178     }
01179 
01180       // Called by the second initialize_dispatch above
01181       template<typename _InputIterator>
01182         void
01183         _M_range_initialize(_InputIterator __first,
01184                 _InputIterator __last, std::input_iterator_tag)
01185         {
01186       for (; __first != __last; ++__first)
01187 #if __cplusplus >= 201103L
01188         emplace_back(*__first);
01189 #else
01190         push_back(*__first);
01191 #endif
01192     }
01193 
01194       // Called by the second initialize_dispatch above
01195       template<typename _ForwardIterator>
01196         void
01197         _M_range_initialize(_ForwardIterator __first,
01198                 _ForwardIterator __last, std::forward_iterator_tag)
01199         {
01200       const size_type __n = std::distance(__first, __last);
01201       this->_M_impl._M_start = this->_M_allocate(__n);
01202       this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
01203       this->_M_impl._M_finish =
01204         std::__uninitialized_copy_a(__first, __last,
01205                     this->_M_impl._M_start,
01206                     _M_get_Tp_allocator());
01207     }
01208 
01209       // Called by the first initialize_dispatch above and by the
01210       // vector(n,value,a) constructor.
01211       void
01212       _M_fill_initialize(size_type __n, const value_type& __value)
01213       {
01214     std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value, 
01215                       _M_get_Tp_allocator());
01216     this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
01217       }
01218 
01219 #if __cplusplus >= 201103L
01220       // Called by the vector(n) constructor.
01221       void
01222       _M_default_initialize(size_type __n)
01223       {
01224     std::__uninitialized_default_n_a(this->_M_impl._M_start, __n, 
01225                      _M_get_Tp_allocator());
01226     this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
01227       }
01228 #endif
01229 
01230       // Internal assign functions follow.  The *_aux functions do the actual
01231       // assignment work for the range versions.
01232 
01233       // Called by the range assign to implement [23.1.1]/9
01234 
01235       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01236       // 438. Ambiguity in the "do the right thing" clause
01237       template<typename _Integer>
01238         void
01239         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
01240         { _M_fill_assign(__n, __val); }
01241 
01242       // Called by the range assign to implement [23.1.1]/9
01243       template<typename _InputIterator>
01244         void
01245         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
01246                __false_type)
01247         {
01248       typedef typename std::iterator_traits<_InputIterator>::
01249         iterator_category _IterCategory;
01250       _M_assign_aux(__first, __last, _IterCategory());
01251     }
01252 
01253       // Called by the second assign_dispatch above
01254       template<typename _InputIterator>
01255         void
01256         _M_assign_aux(_InputIterator __first, _InputIterator __last,
01257               std::input_iterator_tag);
01258 
01259       // Called by the second assign_dispatch above
01260       template<typename _ForwardIterator>
01261         void
01262         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
01263               std::forward_iterator_tag);
01264 
01265       // Called by assign(n,t), and the range assign when it turns out
01266       // to be the same thing.
01267       void
01268       _M_fill_assign(size_type __n, const value_type& __val);
01269 
01270 
01271       // Internal insert functions follow.
01272 
01273       // Called by the range insert to implement [23.1.1]/9
01274 
01275       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01276       // 438. Ambiguity in the "do the right thing" clause
01277       template<typename _Integer>
01278         void
01279         _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
01280                __true_type)
01281         { _M_fill_insert(__pos, __n, __val); }
01282 
01283       // Called by the range insert to implement [23.1.1]/9
01284       template<typename _InputIterator>
01285         void
01286         _M_insert_dispatch(iterator __pos, _InputIterator __first,
01287                _InputIterator __last, __false_type)
01288         {
01289       typedef typename std::iterator_traits<_InputIterator>::
01290         iterator_category _IterCategory;
01291       _M_range_insert(__pos, __first, __last, _IterCategory());
01292     }
01293 
01294       // Called by the second insert_dispatch above
01295       template<typename _InputIterator>
01296         void
01297         _M_range_insert(iterator __pos, _InputIterator __first,
01298             _InputIterator __last, std::input_iterator_tag);
01299 
01300       // Called by the second insert_dispatch above
01301       template<typename _ForwardIterator>
01302         void
01303         _M_range_insert(iterator __pos, _ForwardIterator __first,
01304             _ForwardIterator __last, std::forward_iterator_tag);
01305 
01306       // Called by insert(p,n,x), and the range insert when it turns out to be
01307       // the same thing.
01308       void
01309       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
01310 
01311 #if __cplusplus >= 201103L
01312       // Called by resize(n).
01313       void
01314       _M_default_append(size_type __n);
01315 
01316       bool
01317       _M_shrink_to_fit();
01318 #endif
01319 
01320       // Called by insert(p,x)
01321 #if __cplusplus < 201103L
01322       void
01323       _M_insert_aux(iterator __position, const value_type& __x);
01324 #else
01325       template<typename... _Args>
01326         void
01327         _M_insert_aux(iterator __position, _Args&&... __args);
01328 
01329       template<typename... _Args>
01330         void
01331         _M_emplace_back_aux(_Args&&... __args);
01332 #endif
01333 
01334       // Called by the latter.
01335       size_type
01336       _M_check_len(size_type __n, const char* __s) const
01337       {
01338     if (max_size() - size() < __n)
01339       __throw_length_error(__N(__s));
01340 
01341     const size_type __len = size() + std::max(size(), __n);
01342     return (__len < size() || __len > max_size()) ? max_size() : __len;
01343       }
01344 
01345       // Internal erase functions follow.
01346 
01347       // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
01348       // _M_assign_aux.
01349       void
01350       _M_erase_at_end(pointer __pos)
01351       {
01352     std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
01353     this->_M_impl._M_finish = __pos;
01354       }
01355 
01356 #if __cplusplus >= 201103L
01357     private:
01358       // Constant-time move assignment when source object's memory can be
01359       // moved, either because the source's allocator will move too
01360       // or because the allocators are equal.
01361       void
01362       _M_move_assign(vector&& __x, std::true_type) noexcept
01363       {
01364     const vector __tmp(std::move(*this));
01365     this->_M_impl._M_swap_data(__x._M_impl);
01366     if (_Alloc_traits::_S_propagate_on_move_assign())
01367       std::__alloc_on_move(_M_get_Tp_allocator(),
01368                    __x._M_get_Tp_allocator());
01369       }
01370 
01371       // Do move assignment when it might not be possible to move source
01372       // object's memory, resulting in a linear-time operation.
01373       void
01374       _M_move_assign(vector&& __x, std::false_type)
01375       {
01376     if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
01377       _M_move_assign(std::move(__x), std::true_type());
01378     else
01379       {
01380         // The rvalue's allocator cannot be moved and is not equal,
01381         // so we need to individually move each element.
01382         this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
01383              std::__make_move_if_noexcept_iterator(__x.end()));
01384         __x.clear();
01385       }
01386       }
01387 #endif
01388     };
01389 
01390 
01391   /**
01392    *  @brief  Vector equality comparison.
01393    *  @param  __x  A %vector.
01394    *  @param  __y  A %vector of the same type as @a __x.
01395    *  @return  True iff the size and elements of the vectors are equal.
01396    *
01397    *  This is an equivalence relation.  It is linear in the size of the
01398    *  vectors.  Vectors are considered equivalent if their sizes are equal,
01399    *  and if corresponding elements compare equal.
01400   */
01401   template<typename _Tp, typename _Alloc>
01402     inline bool
01403     operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01404     { return (__x.size() == __y.size()
01405           && std::equal(__x.begin(), __x.end(), __y.begin())); }
01406 
01407   /**
01408    *  @brief  Vector ordering relation.
01409    *  @param  __x  A %vector.
01410    *  @param  __y  A %vector of the same type as @a __x.
01411    *  @return  True iff @a __x is lexicographically less than @a __y.
01412    *
01413    *  This is a total ordering relation.  It is linear in the size of the
01414    *  vectors.  The elements must be comparable with @c <.
01415    *
01416    *  See std::lexicographical_compare() for how the determination is made.
01417   */
01418   template<typename _Tp, typename _Alloc>
01419     inline bool
01420     operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01421     { return std::lexicographical_compare(__x.begin(), __x.end(),
01422                       __y.begin(), __y.end()); }
01423 
01424   /// Based on operator==
01425   template<typename _Tp, typename _Alloc>
01426     inline bool
01427     operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01428     { return !(__x == __y); }
01429 
01430   /// Based on operator<
01431   template<typename _Tp, typename _Alloc>
01432     inline bool
01433     operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01434     { return __y < __x; }
01435 
01436   /// Based on operator<
01437   template<typename _Tp, typename _Alloc>
01438     inline bool
01439     operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01440     { return !(__y < __x); }
01441 
01442   /// Based on operator<
01443   template<typename _Tp, typename _Alloc>
01444     inline bool
01445     operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01446     { return !(__x < __y); }
01447 
01448   /// See std::vector::swap().
01449   template<typename _Tp, typename _Alloc>
01450     inline void
01451     swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
01452     { __x.swap(__y); }
01453 
01454 _GLIBCXX_END_NAMESPACE_CONTAINER
01455 } // namespace std
01456 
01457 #endif /* _STL_VECTOR_H */