libstdc++
|
00001 // Deque implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2013 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_deque.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{deque} 00054 */ 00055 00056 #ifndef _STL_DEQUE_H 00057 #define _STL_DEQUE_H 1 00058 00059 #include <bits/concept_check.h> 00060 #include <bits/stl_iterator_base_types.h> 00061 #include <bits/stl_iterator_base_funcs.h> 00062 #if __cplusplus >= 201103L 00063 #include <initializer_list> 00064 #endif 00065 00066 namespace std _GLIBCXX_VISIBILITY(default) 00067 { 00068 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00069 00070 /** 00071 * @brief This function controls the size of memory nodes. 00072 * @param __size The size of an element. 00073 * @return The number (not byte size) of elements per node. 00074 * 00075 * This function started off as a compiler kludge from SGI, but 00076 * seems to be a useful wrapper around a repeated constant 00077 * expression. The @b 512 is tunable (and no other code needs to 00078 * change), but no investigation has been done since inheriting the 00079 * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what 00080 * you are doing, however: changing it breaks the binary 00081 * compatibility!! 00082 */ 00083 00084 #ifndef _GLIBCXX_DEQUE_BUF_SIZE 00085 #define _GLIBCXX_DEQUE_BUF_SIZE 512 00086 #endif 00087 00088 inline size_t 00089 __deque_buf_size(size_t __size) 00090 { return (__size < _GLIBCXX_DEQUE_BUF_SIZE 00091 ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); } 00092 00093 00094 /** 00095 * @brief A deque::iterator. 00096 * 00097 * Quite a bit of intelligence here. Much of the functionality of 00098 * deque is actually passed off to this class. A deque holds two 00099 * of these internally, marking its valid range. Access to 00100 * elements is done as offsets of either of those two, relying on 00101 * operator overloading in this class. 00102 * 00103 * All the functions are op overloads except for _M_set_node. 00104 */ 00105 template<typename _Tp, typename _Ref, typename _Ptr> 00106 struct _Deque_iterator 00107 { 00108 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00109 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00110 00111 static size_t _S_buffer_size() 00112 { return __deque_buf_size(sizeof(_Tp)); } 00113 00114 typedef std::random_access_iterator_tag iterator_category; 00115 typedef _Tp value_type; 00116 typedef _Ptr pointer; 00117 typedef _Ref reference; 00118 typedef size_t size_type; 00119 typedef ptrdiff_t difference_type; 00120 typedef _Tp** _Map_pointer; 00121 typedef _Deque_iterator _Self; 00122 00123 _Tp* _M_cur; 00124 _Tp* _M_first; 00125 _Tp* _M_last; 00126 _Map_pointer _M_node; 00127 00128 _Deque_iterator(_Tp* __x, _Map_pointer __y) 00129 : _M_cur(__x), _M_first(*__y), 00130 _M_last(*__y + _S_buffer_size()), _M_node(__y) { } 00131 00132 _Deque_iterator() 00133 : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { } 00134 00135 _Deque_iterator(const iterator& __x) 00136 : _M_cur(__x._M_cur), _M_first(__x._M_first), 00137 _M_last(__x._M_last), _M_node(__x._M_node) { } 00138 00139 reference 00140 operator*() const 00141 { return *_M_cur; } 00142 00143 pointer 00144 operator->() const 00145 { return _M_cur; } 00146 00147 _Self& 00148 operator++() 00149 { 00150 ++_M_cur; 00151 if (_M_cur == _M_last) 00152 { 00153 _M_set_node(_M_node + 1); 00154 _M_cur = _M_first; 00155 } 00156 return *this; 00157 } 00158 00159 _Self 00160 operator++(int) 00161 { 00162 _Self __tmp = *this; 00163 ++*this; 00164 return __tmp; 00165 } 00166 00167 _Self& 00168 operator--() 00169 { 00170 if (_M_cur == _M_first) 00171 { 00172 _M_set_node(_M_node - 1); 00173 _M_cur = _M_last; 00174 } 00175 --_M_cur; 00176 return *this; 00177 } 00178 00179 _Self 00180 operator--(int) 00181 { 00182 _Self __tmp = *this; 00183 --*this; 00184 return __tmp; 00185 } 00186 00187 _Self& 00188 operator+=(difference_type __n) 00189 { 00190 const difference_type __offset = __n + (_M_cur - _M_first); 00191 if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) 00192 _M_cur += __n; 00193 else 00194 { 00195 const difference_type __node_offset = 00196 __offset > 0 ? __offset / difference_type(_S_buffer_size()) 00197 : -difference_type((-__offset - 1) 00198 / _S_buffer_size()) - 1; 00199 _M_set_node(_M_node + __node_offset); 00200 _M_cur = _M_first + (__offset - __node_offset 00201 * difference_type(_S_buffer_size())); 00202 } 00203 return *this; 00204 } 00205 00206 _Self 00207 operator+(difference_type __n) const 00208 { 00209 _Self __tmp = *this; 00210 return __tmp += __n; 00211 } 00212 00213 _Self& 00214 operator-=(difference_type __n) 00215 { return *this += -__n; } 00216 00217 _Self 00218 operator-(difference_type __n) const 00219 { 00220 _Self __tmp = *this; 00221 return __tmp -= __n; 00222 } 00223 00224 reference 00225 operator[](difference_type __n) const 00226 { return *(*this + __n); } 00227 00228 /** 00229 * Prepares to traverse new_node. Sets everything except 00230 * _M_cur, which should therefore be set by the caller 00231 * immediately afterwards, based on _M_first and _M_last. 00232 */ 00233 void 00234 _M_set_node(_Map_pointer __new_node) 00235 { 00236 _M_node = __new_node; 00237 _M_first = *__new_node; 00238 _M_last = _M_first + difference_type(_S_buffer_size()); 00239 } 00240 }; 00241 00242 // Note: we also provide overloads whose operands are of the same type in 00243 // order to avoid ambiguous overload resolution when std::rel_ops operators 00244 // are in scope (for additional details, see libstdc++/3628) 00245 template<typename _Tp, typename _Ref, typename _Ptr> 00246 inline bool 00247 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00248 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00249 { return __x._M_cur == __y._M_cur; } 00250 00251 template<typename _Tp, typename _RefL, typename _PtrL, 00252 typename _RefR, typename _PtrR> 00253 inline bool 00254 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00255 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00256 { return __x._M_cur == __y._M_cur; } 00257 00258 template<typename _Tp, typename _Ref, typename _Ptr> 00259 inline bool 00260 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00261 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00262 { return !(__x == __y); } 00263 00264 template<typename _Tp, typename _RefL, typename _PtrL, 00265 typename _RefR, typename _PtrR> 00266 inline bool 00267 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00268 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00269 { return !(__x == __y); } 00270 00271 template<typename _Tp, typename _Ref, typename _Ptr> 00272 inline bool 00273 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00274 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00275 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00276 : (__x._M_node < __y._M_node); } 00277 00278 template<typename _Tp, typename _RefL, typename _PtrL, 00279 typename _RefR, typename _PtrR> 00280 inline bool 00281 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00282 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00283 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00284 : (__x._M_node < __y._M_node); } 00285 00286 template<typename _Tp, typename _Ref, typename _Ptr> 00287 inline bool 00288 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00289 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00290 { return __y < __x; } 00291 00292 template<typename _Tp, typename _RefL, typename _PtrL, 00293 typename _RefR, typename _PtrR> 00294 inline bool 00295 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00296 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00297 { return __y < __x; } 00298 00299 template<typename _Tp, typename _Ref, typename _Ptr> 00300 inline bool 00301 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00302 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00303 { return !(__y < __x); } 00304 00305 template<typename _Tp, typename _RefL, typename _PtrL, 00306 typename _RefR, typename _PtrR> 00307 inline bool 00308 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00309 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00310 { return !(__y < __x); } 00311 00312 template<typename _Tp, typename _Ref, typename _Ptr> 00313 inline bool 00314 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00315 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00316 { return !(__x < __y); } 00317 00318 template<typename _Tp, typename _RefL, typename _PtrL, 00319 typename _RefR, typename _PtrR> 00320 inline bool 00321 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00322 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00323 { return !(__x < __y); } 00324 00325 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00326 // According to the resolution of DR179 not only the various comparison 00327 // operators but also operator- must accept mixed iterator/const_iterator 00328 // parameters. 00329 template<typename _Tp, typename _Ref, typename _Ptr> 00330 inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type 00331 operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00332 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00333 { 00334 return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type 00335 (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size()) 00336 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00337 + (__y._M_last - __y._M_cur); 00338 } 00339 00340 template<typename _Tp, typename _RefL, typename _PtrL, 00341 typename _RefR, typename _PtrR> 00342 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00343 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00344 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00345 { 00346 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00347 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) 00348 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00349 + (__y._M_last - __y._M_cur); 00350 } 00351 00352 template<typename _Tp, typename _Ref, typename _Ptr> 00353 inline _Deque_iterator<_Tp, _Ref, _Ptr> 00354 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) 00355 { return __x + __n; } 00356 00357 template<typename _Tp> 00358 void 00359 fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&, 00360 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&); 00361 00362 template<typename _Tp> 00363 _Deque_iterator<_Tp, _Tp&, _Tp*> 00364 copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00365 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00366 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00367 00368 template<typename _Tp> 00369 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00370 copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00371 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00372 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00373 { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), 00374 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), 00375 __result); } 00376 00377 template<typename _Tp> 00378 _Deque_iterator<_Tp, _Tp&, _Tp*> 00379 copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00380 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00381 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00382 00383 template<typename _Tp> 00384 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00385 copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00386 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00387 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00388 { return std::copy_backward(_Deque_iterator<_Tp, 00389 const _Tp&, const _Tp*>(__first), 00390 _Deque_iterator<_Tp, 00391 const _Tp&, const _Tp*>(__last), 00392 __result); } 00393 00394 #if __cplusplus >= 201103L 00395 template<typename _Tp> 00396 _Deque_iterator<_Tp, _Tp&, _Tp*> 00397 move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00398 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00399 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00400 00401 template<typename _Tp> 00402 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00403 move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00404 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00405 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00406 { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), 00407 _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), 00408 __result); } 00409 00410 template<typename _Tp> 00411 _Deque_iterator<_Tp, _Tp&, _Tp*> 00412 move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00413 _Deque_iterator<_Tp, const _Tp&, const _Tp*>, 00414 _Deque_iterator<_Tp, _Tp&, _Tp*>); 00415 00416 template<typename _Tp> 00417 inline _Deque_iterator<_Tp, _Tp&, _Tp*> 00418 move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, 00419 _Deque_iterator<_Tp, _Tp&, _Tp*> __last, 00420 _Deque_iterator<_Tp, _Tp&, _Tp*> __result) 00421 { return std::move_backward(_Deque_iterator<_Tp, 00422 const _Tp&, const _Tp*>(__first), 00423 _Deque_iterator<_Tp, 00424 const _Tp&, const _Tp*>(__last), 00425 __result); } 00426 #endif 00427 00428 /** 00429 * Deque base class. This class provides the unified face for %deque's 00430 * allocation. This class's constructor and destructor allocate and 00431 * deallocate (but do not initialize) storage. This makes %exception 00432 * safety easier. 00433 * 00434 * Nothing in this class ever constructs or destroys an actual Tp element. 00435 * (Deque handles that itself.) Only/All memory management is performed 00436 * here. 00437 */ 00438 template<typename _Tp, typename _Alloc> 00439 class _Deque_base 00440 { 00441 public: 00442 typedef _Alloc allocator_type; 00443 00444 allocator_type 00445 get_allocator() const _GLIBCXX_NOEXCEPT 00446 { return allocator_type(_M_get_Tp_allocator()); } 00447 00448 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00449 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00450 00451 _Deque_base() 00452 : _M_impl() 00453 { _M_initialize_map(0); } 00454 00455 _Deque_base(size_t __num_elements) 00456 : _M_impl() 00457 { _M_initialize_map(__num_elements); } 00458 00459 _Deque_base(const allocator_type& __a, size_t __num_elements) 00460 : _M_impl(__a) 00461 { _M_initialize_map(__num_elements); } 00462 00463 _Deque_base(const allocator_type& __a) 00464 : _M_impl(__a) 00465 { } 00466 00467 #if __cplusplus >= 201103L 00468 _Deque_base(_Deque_base&& __x) 00469 : _M_impl(std::move(__x._M_get_Tp_allocator())) 00470 { 00471 _M_initialize_map(0); 00472 if (__x._M_impl._M_map) 00473 { 00474 std::swap(this->_M_impl._M_start, __x._M_impl._M_start); 00475 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); 00476 std::swap(this->_M_impl._M_map, __x._M_impl._M_map); 00477 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); 00478 } 00479 } 00480 #endif 00481 00482 ~_Deque_base(); 00483 00484 protected: 00485 //This struct encapsulates the implementation of the std::deque 00486 //standard container and at the same time makes use of the EBO 00487 //for empty allocators. 00488 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type; 00489 00490 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; 00491 00492 struct _Deque_impl 00493 : public _Tp_alloc_type 00494 { 00495 _Tp** _M_map; 00496 size_t _M_map_size; 00497 iterator _M_start; 00498 iterator _M_finish; 00499 00500 _Deque_impl() 00501 : _Tp_alloc_type(), _M_map(0), _M_map_size(0), 00502 _M_start(), _M_finish() 00503 { } 00504 00505 _Deque_impl(const _Tp_alloc_type& __a) 00506 : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0), 00507 _M_start(), _M_finish() 00508 { } 00509 00510 #if __cplusplus >= 201103L 00511 _Deque_impl(_Tp_alloc_type&& __a) 00512 : _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0), 00513 _M_start(), _M_finish() 00514 { } 00515 #endif 00516 }; 00517 00518 _Tp_alloc_type& 00519 _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT 00520 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); } 00521 00522 const _Tp_alloc_type& 00523 _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT 00524 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); } 00525 00526 _Map_alloc_type 00527 _M_get_map_allocator() const _GLIBCXX_NOEXCEPT 00528 { return _Map_alloc_type(_M_get_Tp_allocator()); } 00529 00530 _Tp* 00531 _M_allocate_node() 00532 { 00533 return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp))); 00534 } 00535 00536 void 00537 _M_deallocate_node(_Tp* __p) 00538 { 00539 _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp))); 00540 } 00541 00542 _Tp** 00543 _M_allocate_map(size_t __n) 00544 { return _M_get_map_allocator().allocate(__n); } 00545 00546 void 00547 _M_deallocate_map(_Tp** __p, size_t __n) 00548 { _M_get_map_allocator().deallocate(__p, __n); } 00549 00550 protected: 00551 void _M_initialize_map(size_t); 00552 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish); 00553 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish); 00554 enum { _S_initial_map_size = 8 }; 00555 00556 _Deque_impl _M_impl; 00557 }; 00558 00559 template<typename _Tp, typename _Alloc> 00560 _Deque_base<_Tp, _Alloc>:: 00561 ~_Deque_base() 00562 { 00563 if (this->_M_impl._M_map) 00564 { 00565 _M_destroy_nodes(this->_M_impl._M_start._M_node, 00566 this->_M_impl._M_finish._M_node + 1); 00567 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00568 } 00569 } 00570 00571 /** 00572 * @brief Layout storage. 00573 * @param __num_elements The count of T's for which to allocate space 00574 * at first. 00575 * @return Nothing. 00576 * 00577 * The initial underlying memory layout is a bit complicated... 00578 */ 00579 template<typename _Tp, typename _Alloc> 00580 void 00581 _Deque_base<_Tp, _Alloc>:: 00582 _M_initialize_map(size_t __num_elements) 00583 { 00584 const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp)) 00585 + 1); 00586 00587 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size, 00588 size_t(__num_nodes + 2)); 00589 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size); 00590 00591 // For "small" maps (needing less than _M_map_size nodes), allocation 00592 // starts in the middle elements and grows outwards. So nstart may be 00593 // the beginning of _M_map, but for small maps it may be as far in as 00594 // _M_map+3. 00595 00596 _Tp** __nstart = (this->_M_impl._M_map 00597 + (this->_M_impl._M_map_size - __num_nodes) / 2); 00598 _Tp** __nfinish = __nstart + __num_nodes; 00599 00600 __try 00601 { _M_create_nodes(__nstart, __nfinish); } 00602 __catch(...) 00603 { 00604 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00605 this->_M_impl._M_map = 0; 00606 this->_M_impl._M_map_size = 0; 00607 __throw_exception_again; 00608 } 00609 00610 this->_M_impl._M_start._M_set_node(__nstart); 00611 this->_M_impl._M_finish._M_set_node(__nfinish - 1); 00612 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first; 00613 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first 00614 + __num_elements 00615 % __deque_buf_size(sizeof(_Tp))); 00616 } 00617 00618 template<typename _Tp, typename _Alloc> 00619 void 00620 _Deque_base<_Tp, _Alloc>:: 00621 _M_create_nodes(_Tp** __nstart, _Tp** __nfinish) 00622 { 00623 _Tp** __cur; 00624 __try 00625 { 00626 for (__cur = __nstart; __cur < __nfinish; ++__cur) 00627 *__cur = this->_M_allocate_node(); 00628 } 00629 __catch(...) 00630 { 00631 _M_destroy_nodes(__nstart, __cur); 00632 __throw_exception_again; 00633 } 00634 } 00635 00636 template<typename _Tp, typename _Alloc> 00637 void 00638 _Deque_base<_Tp, _Alloc>:: 00639 _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) 00640 { 00641 for (_Tp** __n = __nstart; __n < __nfinish; ++__n) 00642 _M_deallocate_node(*__n); 00643 } 00644 00645 /** 00646 * @brief A standard container using fixed-size memory allocation and 00647 * constant-time manipulation of elements at either end. 00648 * 00649 * @ingroup sequences 00650 * 00651 * @tparam _Tp Type of element. 00652 * @tparam _Alloc Allocator type, defaults to allocator<_Tp>. 00653 * 00654 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00655 * <a href="tables.html#66">reversible container</a>, and a 00656 * <a href="tables.html#67">sequence</a>, including the 00657 * <a href="tables.html#68">optional sequence requirements</a>. 00658 * 00659 * In previous HP/SGI versions of deque, there was an extra template 00660 * parameter so users could control the node size. This extension turned 00661 * out to violate the C++ standard (it can be detected using template 00662 * template parameters), and it was removed. 00663 * 00664 * Here's how a deque<Tp> manages memory. Each deque has 4 members: 00665 * 00666 * - Tp** _M_map 00667 * - size_t _M_map_size 00668 * - iterator _M_start, _M_finish 00669 * 00670 * map_size is at least 8. %map is an array of map_size 00671 * pointers-to-@a nodes. (The name %map has nothing to do with the 00672 * std::map class, and @b nodes should not be confused with 00673 * std::list's usage of @a node.) 00674 * 00675 * A @a node has no specific type name as such, but it is referred 00676 * to as @a node in this file. It is a simple array-of-Tp. If Tp 00677 * is very large, there will be one Tp element per node (i.e., an 00678 * @a array of one). For non-huge Tp's, node size is inversely 00679 * related to Tp size: the larger the Tp, the fewer Tp's will fit 00680 * in a node. The goal here is to keep the total size of a node 00681 * relatively small and constant over different Tp's, to improve 00682 * allocator efficiency. 00683 * 00684 * Not every pointer in the %map array will point to a node. If 00685 * the initial number of elements in the deque is small, the 00686 * /middle/ %map pointers will be valid, and the ones at the edges 00687 * will be unused. This same situation will arise as the %map 00688 * grows: available %map pointers, if any, will be on the ends. As 00689 * new nodes are created, only a subset of the %map's pointers need 00690 * to be copied @a outward. 00691 * 00692 * Class invariants: 00693 * - For any nonsingular iterator i: 00694 * - i.node points to a member of the %map array. (Yes, you read that 00695 * correctly: i.node does not actually point to a node.) The member of 00696 * the %map array is what actually points to the node. 00697 * - i.first == *(i.node) (This points to the node (first Tp element).) 00698 * - i.last == i.first + node_size 00699 * - i.cur is a pointer in the range [i.first, i.last). NOTE: 00700 * the implication of this is that i.cur is always a dereferenceable 00701 * pointer, even if i is a past-the-end iterator. 00702 * - Start and Finish are always nonsingular iterators. NOTE: this 00703 * means that an empty deque must have one node, a deque with <N 00704 * elements (where N is the node buffer size) must have one node, a 00705 * deque with N through (2N-1) elements must have two nodes, etc. 00706 * - For every node other than start.node and finish.node, every 00707 * element in the node is an initialized object. If start.node == 00708 * finish.node, then [start.cur, finish.cur) are initialized 00709 * objects, and the elements outside that range are uninitialized 00710 * storage. Otherwise, [start.cur, start.last) and [finish.first, 00711 * finish.cur) are initialized objects, and [start.first, start.cur) 00712 * and [finish.cur, finish.last) are uninitialized storage. 00713 * - [%map, %map + map_size) is a valid, non-empty range. 00714 * - [start.node, finish.node] is a valid range contained within 00715 * [%map, %map + map_size). 00716 * - A pointer in the range [%map, %map + map_size) points to an allocated 00717 * node if and only if the pointer is in the range 00718 * [start.node, finish.node]. 00719 * 00720 * Here's the magic: nothing in deque is @b aware of the discontiguous 00721 * storage! 00722 * 00723 * The memory setup and layout occurs in the parent, _Base, and the iterator 00724 * class is entirely responsible for @a leaping from one node to the next. 00725 * All the implementation routines for deque itself work only through the 00726 * start and finish iterators. This keeps the routines simple and sane, 00727 * and we can use other standard algorithms as well. 00728 */ 00729 template<typename _Tp, typename _Alloc = std::allocator<_Tp> > 00730 class deque : protected _Deque_base<_Tp, _Alloc> 00731 { 00732 // concept requirements 00733 typedef typename _Alloc::value_type _Alloc_value_type; 00734 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00735 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) 00736 00737 typedef _Deque_base<_Tp, _Alloc> _Base; 00738 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; 00739 00740 public: 00741 typedef _Tp value_type; 00742 typedef typename _Tp_alloc_type::pointer pointer; 00743 typedef typename _Tp_alloc_type::const_pointer const_pointer; 00744 typedef typename _Tp_alloc_type::reference reference; 00745 typedef typename _Tp_alloc_type::const_reference const_reference; 00746 typedef typename _Base::iterator iterator; 00747 typedef typename _Base::const_iterator const_iterator; 00748 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 00749 typedef std::reverse_iterator<iterator> reverse_iterator; 00750 typedef size_t size_type; 00751 typedef ptrdiff_t difference_type; 00752 typedef _Alloc allocator_type; 00753 00754 protected: 00755 typedef pointer* _Map_pointer; 00756 00757 static size_t _S_buffer_size() 00758 { return __deque_buf_size(sizeof(_Tp)); } 00759 00760 // Functions controlling memory layout, and nothing else. 00761 using _Base::_M_initialize_map; 00762 using _Base::_M_create_nodes; 00763 using _Base::_M_destroy_nodes; 00764 using _Base::_M_allocate_node; 00765 using _Base::_M_deallocate_node; 00766 using _Base::_M_allocate_map; 00767 using _Base::_M_deallocate_map; 00768 using _Base::_M_get_Tp_allocator; 00769 00770 /** 00771 * A total of four data members accumulated down the hierarchy. 00772 * May be accessed via _M_impl.* 00773 */ 00774 using _Base::_M_impl; 00775 00776 public: 00777 // [23.2.1.1] construct/copy/destroy 00778 // (assign() and get_allocator() are also listed in this section) 00779 /** 00780 * @brief Default constructor creates no elements. 00781 */ 00782 deque() 00783 : _Base() { } 00784 00785 /** 00786 * @brief Creates a %deque with no elements. 00787 * @param __a An allocator object. 00788 */ 00789 explicit 00790 deque(const allocator_type& __a) 00791 : _Base(__a, 0) { } 00792 00793 #if __cplusplus >= 201103L 00794 /** 00795 * @brief Creates a %deque with default constructed elements. 00796 * @param __n The number of elements to initially create. 00797 * 00798 * This constructor fills the %deque with @a n default 00799 * constructed elements. 00800 */ 00801 explicit 00802 deque(size_type __n) 00803 : _Base(__n) 00804 { _M_default_initialize(); } 00805 00806 /** 00807 * @brief Creates a %deque with copies of an exemplar element. 00808 * @param __n The number of elements to initially create. 00809 * @param __value An element to copy. 00810 * @param __a An allocator. 00811 * 00812 * This constructor fills the %deque with @a __n copies of @a __value. 00813 */ 00814 deque(size_type __n, const value_type& __value, 00815 const allocator_type& __a = allocator_type()) 00816 : _Base(__a, __n) 00817 { _M_fill_initialize(__value); } 00818 #else 00819 /** 00820 * @brief Creates a %deque with copies of an exemplar element. 00821 * @param __n The number of elements to initially create. 00822 * @param __value An element to copy. 00823 * @param __a An allocator. 00824 * 00825 * This constructor fills the %deque with @a __n copies of @a __value. 00826 */ 00827 explicit 00828 deque(size_type __n, const value_type& __value = value_type(), 00829 const allocator_type& __a = allocator_type()) 00830 : _Base(__a, __n) 00831 { _M_fill_initialize(__value); } 00832 #endif 00833 00834 /** 00835 * @brief %Deque copy constructor. 00836 * @param __x A %deque of identical element and allocator types. 00837 * 00838 * The newly-created %deque uses a copy of the allocation object used 00839 * by @a __x. 00840 */ 00841 deque(const deque& __x) 00842 : _Base(__x._M_get_Tp_allocator(), __x.size()) 00843 { std::__uninitialized_copy_a(__x.begin(), __x.end(), 00844 this->_M_impl._M_start, 00845 _M_get_Tp_allocator()); } 00846 00847 #if __cplusplus >= 201103L 00848 /** 00849 * @brief %Deque move constructor. 00850 * @param __x A %deque of identical element and allocator types. 00851 * 00852 * The newly-created %deque contains the exact contents of @a __x. 00853 * The contents of @a __x are a valid, but unspecified %deque. 00854 */ 00855 deque(deque&& __x) 00856 : _Base(std::move(__x)) { } 00857 00858 /** 00859 * @brief Builds a %deque from an initializer list. 00860 * @param __l An initializer_list. 00861 * @param __a An allocator object. 00862 * 00863 * Create a %deque consisting of copies of the elements in the 00864 * initializer_list @a __l. 00865 * 00866 * This will call the element type's copy constructor N times 00867 * (where N is __l.size()) and do no memory reallocation. 00868 */ 00869 deque(initializer_list<value_type> __l, 00870 const allocator_type& __a = allocator_type()) 00871 : _Base(__a) 00872 { 00873 _M_range_initialize(__l.begin(), __l.end(), 00874 random_access_iterator_tag()); 00875 } 00876 #endif 00877 00878 /** 00879 * @brief Builds a %deque from a range. 00880 * @param __first An input iterator. 00881 * @param __last An input iterator. 00882 * @param __a An allocator object. 00883 * 00884 * Create a %deque consisting of copies of the elements from [__first, 00885 * __last). 00886 * 00887 * If the iterators are forward, bidirectional, or random-access, then 00888 * this will call the elements' copy constructor N times (where N is 00889 * distance(__first,__last)) and do no memory reallocation. But if only 00890 * input iterators are used, then this will do at most 2N calls to the 00891 * copy constructor, and logN memory reallocations. 00892 */ 00893 #if __cplusplus >= 201103L 00894 template<typename _InputIterator, 00895 typename = std::_RequireInputIter<_InputIterator>> 00896 deque(_InputIterator __first, _InputIterator __last, 00897 const allocator_type& __a = allocator_type()) 00898 : _Base(__a) 00899 { _M_initialize_dispatch(__first, __last, __false_type()); } 00900 #else 00901 template<typename _InputIterator> 00902 deque(_InputIterator __first, _InputIterator __last, 00903 const allocator_type& __a = allocator_type()) 00904 : _Base(__a) 00905 { 00906 // Check whether it's an integral type. If so, it's not an iterator. 00907 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 00908 _M_initialize_dispatch(__first, __last, _Integral()); 00909 } 00910 #endif 00911 00912 /** 00913 * The dtor only erases the elements, and note that if the elements 00914 * themselves are pointers, the pointed-to memory is not touched in any 00915 * way. Managing the pointer is the user's responsibility. 00916 */ 00917 ~deque() _GLIBCXX_NOEXCEPT 00918 { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); } 00919 00920 /** 00921 * @brief %Deque assignment operator. 00922 * @param __x A %deque of identical element and allocator types. 00923 * 00924 * All the elements of @a x are copied, but unlike the copy constructor, 00925 * the allocator object is not copied. 00926 */ 00927 deque& 00928 operator=(const deque& __x); 00929 00930 #if __cplusplus >= 201103L 00931 /** 00932 * @brief %Deque move assignment operator. 00933 * @param __x A %deque of identical element and allocator types. 00934 * 00935 * The contents of @a __x are moved into this deque (without copying). 00936 * @a __x is a valid, but unspecified %deque. 00937 */ 00938 deque& 00939 operator=(deque&& __x) 00940 { 00941 // NB: DR 1204. 00942 // NB: DR 675. 00943 this->clear(); 00944 this->swap(__x); 00945 return *this; 00946 } 00947 00948 /** 00949 * @brief Assigns an initializer list to a %deque. 00950 * @param __l An initializer_list. 00951 * 00952 * This function fills a %deque with copies of the elements in the 00953 * initializer_list @a __l. 00954 * 00955 * Note that the assignment completely changes the %deque and that the 00956 * resulting %deque's size is the same as the number of elements 00957 * assigned. Old data may be lost. 00958 */ 00959 deque& 00960 operator=(initializer_list<value_type> __l) 00961 { 00962 this->assign(__l.begin(), __l.end()); 00963 return *this; 00964 } 00965 #endif 00966 00967 /** 00968 * @brief Assigns a given value to a %deque. 00969 * @param __n Number of elements to be assigned. 00970 * @param __val Value to be assigned. 00971 * 00972 * This function fills a %deque with @a n copies of the given 00973 * value. Note that the assignment completely changes the 00974 * %deque and that the resulting %deque's size is the same as 00975 * the number of elements assigned. Old data may be lost. 00976 */ 00977 void 00978 assign(size_type __n, const value_type& __val) 00979 { _M_fill_assign(__n, __val); } 00980 00981 /** 00982 * @brief Assigns a range to a %deque. 00983 * @param __first An input iterator. 00984 * @param __last An input iterator. 00985 * 00986 * This function fills a %deque with copies of the elements in the 00987 * range [__first,__last). 00988 * 00989 * Note that the assignment completely changes the %deque and that the 00990 * resulting %deque's size is the same as the number of elements 00991 * assigned. Old data may be lost. 00992 */ 00993 #if __cplusplus >= 201103L 00994 template<typename _InputIterator, 00995 typename = std::_RequireInputIter<_InputIterator>> 00996 void 00997 assign(_InputIterator __first, _InputIterator __last) 00998 { _M_assign_dispatch(__first, __last, __false_type()); } 00999 #else 01000 template<typename _InputIterator> 01001 void 01002 assign(_InputIterator __first, _InputIterator __last) 01003 { 01004 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01005 _M_assign_dispatch(__first, __last, _Integral()); 01006 } 01007 #endif 01008 01009 #if __cplusplus >= 201103L 01010 /** 01011 * @brief Assigns an initializer list to a %deque. 01012 * @param __l An initializer_list. 01013 * 01014 * This function fills a %deque with copies of the elements in the 01015 * initializer_list @a __l. 01016 * 01017 * Note that the assignment completely changes the %deque and that the 01018 * resulting %deque's size is the same as the number of elements 01019 * assigned. Old data may be lost. 01020 */ 01021 void 01022 assign(initializer_list<value_type> __l) 01023 { this->assign(__l.begin(), __l.end()); } 01024 #endif 01025 01026 /// Get a copy of the memory allocation object. 01027 allocator_type 01028 get_allocator() const _GLIBCXX_NOEXCEPT 01029 { return _Base::get_allocator(); } 01030 01031 // iterators 01032 /** 01033 * Returns a read/write iterator that points to the first element in the 01034 * %deque. Iteration is done in ordinary element order. 01035 */ 01036 iterator 01037 begin() _GLIBCXX_NOEXCEPT 01038 { return this->_M_impl._M_start; } 01039 01040 /** 01041 * Returns a read-only (constant) iterator that points to the first 01042 * element in the %deque. Iteration is done in ordinary element order. 01043 */ 01044 const_iterator 01045 begin() const _GLIBCXX_NOEXCEPT 01046 { return this->_M_impl._M_start; } 01047 01048 /** 01049 * Returns a read/write iterator that points one past the last 01050 * element in the %deque. Iteration is done in ordinary 01051 * element order. 01052 */ 01053 iterator 01054 end() _GLIBCXX_NOEXCEPT 01055 { return this->_M_impl._M_finish; } 01056 01057 /** 01058 * Returns a read-only (constant) iterator that points one past 01059 * the last element in the %deque. Iteration is done in 01060 * ordinary element order. 01061 */ 01062 const_iterator 01063 end() const _GLIBCXX_NOEXCEPT 01064 { return this->_M_impl._M_finish; } 01065 01066 /** 01067 * Returns a read/write reverse iterator that points to the 01068 * last element in the %deque. Iteration is done in reverse 01069 * element order. 01070 */ 01071 reverse_iterator 01072 rbegin() _GLIBCXX_NOEXCEPT 01073 { return reverse_iterator(this->_M_impl._M_finish); } 01074 01075 /** 01076 * Returns a read-only (constant) reverse iterator that points 01077 * to the last element in the %deque. Iteration is done in 01078 * reverse element order. 01079 */ 01080 const_reverse_iterator 01081 rbegin() const _GLIBCXX_NOEXCEPT 01082 { return const_reverse_iterator(this->_M_impl._M_finish); } 01083 01084 /** 01085 * Returns a read/write reverse iterator that points to one 01086 * before the first element in the %deque. Iteration is done 01087 * in reverse element order. 01088 */ 01089 reverse_iterator 01090 rend() _GLIBCXX_NOEXCEPT 01091 { return reverse_iterator(this->_M_impl._M_start); } 01092 01093 /** 01094 * Returns a read-only (constant) reverse iterator that points 01095 * to one before the first element in the %deque. Iteration is 01096 * done in reverse element order. 01097 */ 01098 const_reverse_iterator 01099 rend() const _GLIBCXX_NOEXCEPT 01100 { return const_reverse_iterator(this->_M_impl._M_start); } 01101 01102 #if __cplusplus >= 201103L 01103 /** 01104 * Returns a read-only (constant) iterator that points to the first 01105 * element in the %deque. Iteration is done in ordinary element order. 01106 */ 01107 const_iterator 01108 cbegin() const noexcept 01109 { return this->_M_impl._M_start; } 01110 01111 /** 01112 * Returns a read-only (constant) iterator that points one past 01113 * the last element in the %deque. Iteration is done in 01114 * ordinary element order. 01115 */ 01116 const_iterator 01117 cend() const noexcept 01118 { return this->_M_impl._M_finish; } 01119 01120 /** 01121 * Returns a read-only (constant) reverse iterator that points 01122 * to the last element in the %deque. Iteration is done in 01123 * reverse element order. 01124 */ 01125 const_reverse_iterator 01126 crbegin() const noexcept 01127 { return const_reverse_iterator(this->_M_impl._M_finish); } 01128 01129 /** 01130 * Returns a read-only (constant) reverse iterator that points 01131 * to one before the first element in the %deque. Iteration is 01132 * done in reverse element order. 01133 */ 01134 const_reverse_iterator 01135 crend() const noexcept 01136 { return const_reverse_iterator(this->_M_impl._M_start); } 01137 #endif 01138 01139 // [23.2.1.2] capacity 01140 /** Returns the number of elements in the %deque. */ 01141 size_type 01142 size() const _GLIBCXX_NOEXCEPT 01143 { return this->_M_impl._M_finish - this->_M_impl._M_start; } 01144 01145 /** Returns the size() of the largest possible %deque. */ 01146 size_type 01147 max_size() const _GLIBCXX_NOEXCEPT 01148 { return _M_get_Tp_allocator().max_size(); } 01149 01150 #if __cplusplus >= 201103L 01151 /** 01152 * @brief Resizes the %deque to the specified number of elements. 01153 * @param __new_size Number of elements the %deque should contain. 01154 * 01155 * This function will %resize the %deque to the specified 01156 * number of elements. If the number is smaller than the 01157 * %deque's current size the %deque is truncated, otherwise 01158 * default constructed elements are appended. 01159 */ 01160 void 01161 resize(size_type __new_size) 01162 { 01163 const size_type __len = size(); 01164 if (__new_size > __len) 01165 _M_default_append(__new_size - __len); 01166 else if (__new_size < __len) 01167 _M_erase_at_end(this->_M_impl._M_start 01168 + difference_type(__new_size)); 01169 } 01170 01171 /** 01172 * @brief Resizes the %deque to the specified number of elements. 01173 * @param __new_size Number of elements the %deque should contain. 01174 * @param __x Data with which new elements should be populated. 01175 * 01176 * This function will %resize the %deque to the specified 01177 * number of elements. If the number is smaller than the 01178 * %deque's current size the %deque is truncated, otherwise the 01179 * %deque is extended and new elements are populated with given 01180 * data. 01181 */ 01182 void 01183 resize(size_type __new_size, const value_type& __x) 01184 { 01185 const size_type __len = size(); 01186 if (__new_size > __len) 01187 insert(this->_M_impl._M_finish, __new_size - __len, __x); 01188 else if (__new_size < __len) 01189 _M_erase_at_end(this->_M_impl._M_start 01190 + difference_type(__new_size)); 01191 } 01192 #else 01193 /** 01194 * @brief Resizes the %deque to the specified number of elements. 01195 * @param __new_size Number of elements the %deque should contain. 01196 * @param __x Data with which new elements should be populated. 01197 * 01198 * This function will %resize the %deque to the specified 01199 * number of elements. If the number is smaller than the 01200 * %deque's current size the %deque is truncated, otherwise the 01201 * %deque is extended and new elements are populated with given 01202 * data. 01203 */ 01204 void 01205 resize(size_type __new_size, value_type __x = value_type()) 01206 { 01207 const size_type __len = size(); 01208 if (__new_size > __len) 01209 insert(this->_M_impl._M_finish, __new_size - __len, __x); 01210 else if (__new_size < __len) 01211 _M_erase_at_end(this->_M_impl._M_start 01212 + difference_type(__new_size)); 01213 } 01214 #endif 01215 01216 #if __cplusplus >= 201103L 01217 /** A non-binding request to reduce memory use. */ 01218 void 01219 shrink_to_fit() 01220 { _M_shrink_to_fit(); } 01221 #endif 01222 01223 /** 01224 * Returns true if the %deque is empty. (Thus begin() would 01225 * equal end().) 01226 */ 01227 bool 01228 empty() const _GLIBCXX_NOEXCEPT 01229 { return this->_M_impl._M_finish == this->_M_impl._M_start; } 01230 01231 // element access 01232 /** 01233 * @brief Subscript access to the data contained in the %deque. 01234 * @param __n The index of the element for which data should be 01235 * accessed. 01236 * @return Read/write reference to data. 01237 * 01238 * This operator allows for easy, array-style, data access. 01239 * Note that data access with this operator is unchecked and 01240 * out_of_range lookups are not defined. (For checked lookups 01241 * see at().) 01242 */ 01243 reference 01244 operator[](size_type __n) 01245 { return this->_M_impl._M_start[difference_type(__n)]; } 01246 01247 /** 01248 * @brief Subscript access to the data contained in the %deque. 01249 * @param __n The index of the element for which data should be 01250 * accessed. 01251 * @return Read-only (constant) reference to data. 01252 * 01253 * This operator allows for easy, array-style, data access. 01254 * Note that data access with this operator is unchecked and 01255 * out_of_range lookups are not defined. (For checked lookups 01256 * see at().) 01257 */ 01258 const_reference 01259 operator[](size_type __n) const 01260 { return this->_M_impl._M_start[difference_type(__n)]; } 01261 01262 protected: 01263 /// Safety check used only from at(). 01264 void 01265 _M_range_check(size_type __n) const 01266 { 01267 if (__n >= this->size()) 01268 __throw_out_of_range(__N("deque::_M_range_check")); 01269 } 01270 01271 public: 01272 /** 01273 * @brief Provides access to the data contained in the %deque. 01274 * @param __n The index of the element for which data should be 01275 * accessed. 01276 * @return Read/write reference to data. 01277 * @throw std::out_of_range If @a __n is an invalid index. 01278 * 01279 * This function provides for safer data access. The parameter 01280 * is first checked that it is in the range of the deque. The 01281 * function throws out_of_range if the check fails. 01282 */ 01283 reference 01284 at(size_type __n) 01285 { 01286 _M_range_check(__n); 01287 return (*this)[__n]; 01288 } 01289 01290 /** 01291 * @brief Provides access to the data contained in the %deque. 01292 * @param __n The index of the element for which data should be 01293 * accessed. 01294 * @return Read-only (constant) reference to data. 01295 * @throw std::out_of_range If @a __n is an invalid index. 01296 * 01297 * This function provides for safer data access. The parameter is first 01298 * checked that it is in the range of the deque. The function throws 01299 * out_of_range if the check fails. 01300 */ 01301 const_reference 01302 at(size_type __n) const 01303 { 01304 _M_range_check(__n); 01305 return (*this)[__n]; 01306 } 01307 01308 /** 01309 * Returns a read/write reference to the data at the first 01310 * element of the %deque. 01311 */ 01312 reference 01313 front() 01314 { return *begin(); } 01315 01316 /** 01317 * Returns a read-only (constant) reference to the data at the first 01318 * element of the %deque. 01319 */ 01320 const_reference 01321 front() const 01322 { return *begin(); } 01323 01324 /** 01325 * Returns a read/write reference to the data at the last element of the 01326 * %deque. 01327 */ 01328 reference 01329 back() 01330 { 01331 iterator __tmp = end(); 01332 --__tmp; 01333 return *__tmp; 01334 } 01335 01336 /** 01337 * Returns a read-only (constant) reference to the data at the last 01338 * element of the %deque. 01339 */ 01340 const_reference 01341 back() const 01342 { 01343 const_iterator __tmp = end(); 01344 --__tmp; 01345 return *__tmp; 01346 } 01347 01348 // [23.2.1.2] modifiers 01349 /** 01350 * @brief Add data to the front of the %deque. 01351 * @param __x Data to be added. 01352 * 01353 * This is a typical stack operation. The function creates an 01354 * element at the front of the %deque and assigns the given 01355 * data to it. Due to the nature of a %deque this operation 01356 * can be done in constant time. 01357 */ 01358 void 01359 push_front(const value_type& __x) 01360 { 01361 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) 01362 { 01363 this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x); 01364 --this->_M_impl._M_start._M_cur; 01365 } 01366 else 01367 _M_push_front_aux(__x); 01368 } 01369 01370 #if __cplusplus >= 201103L 01371 void 01372 push_front(value_type&& __x) 01373 { emplace_front(std::move(__x)); } 01374 01375 template<typename... _Args> 01376 void 01377 emplace_front(_Args&&... __args); 01378 #endif 01379 01380 /** 01381 * @brief Add data to the end of the %deque. 01382 * @param __x Data to be added. 01383 * 01384 * This is a typical stack operation. The function creates an 01385 * element at the end of the %deque and assigns the given data 01386 * to it. Due to the nature of a %deque this operation can be 01387 * done in constant time. 01388 */ 01389 void 01390 push_back(const value_type& __x) 01391 { 01392 if (this->_M_impl._M_finish._M_cur 01393 != this->_M_impl._M_finish._M_last - 1) 01394 { 01395 this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x); 01396 ++this->_M_impl._M_finish._M_cur; 01397 } 01398 else 01399 _M_push_back_aux(__x); 01400 } 01401 01402 #if __cplusplus >= 201103L 01403 void 01404 push_back(value_type&& __x) 01405 { emplace_back(std::move(__x)); } 01406 01407 template<typename... _Args> 01408 void 01409 emplace_back(_Args&&... __args); 01410 #endif 01411 01412 /** 01413 * @brief Removes first element. 01414 * 01415 * This is a typical stack operation. It shrinks the %deque by one. 01416 * 01417 * Note that no data is returned, and if the first element's data is 01418 * needed, it should be retrieved before pop_front() is called. 01419 */ 01420 void 01421 pop_front() 01422 { 01423 if (this->_M_impl._M_start._M_cur 01424 != this->_M_impl._M_start._M_last - 1) 01425 { 01426 this->_M_impl.destroy(this->_M_impl._M_start._M_cur); 01427 ++this->_M_impl._M_start._M_cur; 01428 } 01429 else 01430 _M_pop_front_aux(); 01431 } 01432 01433 /** 01434 * @brief Removes last element. 01435 * 01436 * This is a typical stack operation. It shrinks the %deque by one. 01437 * 01438 * Note that no data is returned, and if the last element's data is 01439 * needed, it should be retrieved before pop_back() is called. 01440 */ 01441 void 01442 pop_back() 01443 { 01444 if (this->_M_impl._M_finish._M_cur 01445 != this->_M_impl._M_finish._M_first) 01446 { 01447 --this->_M_impl._M_finish._M_cur; 01448 this->_M_impl.destroy(this->_M_impl._M_finish._M_cur); 01449 } 01450 else 01451 _M_pop_back_aux(); 01452 } 01453 01454 #if __cplusplus >= 201103L 01455 /** 01456 * @brief Inserts an object in %deque before specified iterator. 01457 * @param __position An iterator into the %deque. 01458 * @param __args Arguments. 01459 * @return An iterator that points to the inserted data. 01460 * 01461 * This function will insert an object of type T constructed 01462 * with T(std::forward<Args>(args)...) before the specified location. 01463 */ 01464 template<typename... _Args> 01465 iterator 01466 emplace(iterator __position, _Args&&... __args); 01467 #endif 01468 01469 /** 01470 * @brief Inserts given value into %deque before specified iterator. 01471 * @param __position An iterator into the %deque. 01472 * @param __x Data to be inserted. 01473 * @return An iterator that points to the inserted data. 01474 * 01475 * This function will insert a copy of the given value before the 01476 * specified location. 01477 */ 01478 iterator 01479 insert(iterator __position, const value_type& __x); 01480 01481 #if __cplusplus >= 201103L 01482 /** 01483 * @brief Inserts given rvalue into %deque before specified iterator. 01484 * @param __position An iterator into the %deque. 01485 * @param __x Data to be inserted. 01486 * @return An iterator that points to the inserted data. 01487 * 01488 * This function will insert a copy of the given rvalue before the 01489 * specified location. 01490 */ 01491 iterator 01492 insert(iterator __position, value_type&& __x) 01493 { return emplace(__position, std::move(__x)); } 01494 01495 /** 01496 * @brief Inserts an initializer list into the %deque. 01497 * @param __p An iterator into the %deque. 01498 * @param __l An initializer_list. 01499 * 01500 * This function will insert copies of the data in the 01501 * initializer_list @a __l into the %deque before the location 01502 * specified by @a __p. This is known as <em>list insert</em>. 01503 */ 01504 void 01505 insert(iterator __p, initializer_list<value_type> __l) 01506 { this->insert(__p, __l.begin(), __l.end()); } 01507 #endif 01508 01509 /** 01510 * @brief Inserts a number of copies of given data into the %deque. 01511 * @param __position An iterator into the %deque. 01512 * @param __n Number of elements to be inserted. 01513 * @param __x Data to be inserted. 01514 * 01515 * This function will insert a specified number of copies of the given 01516 * data before the location specified by @a __position. 01517 */ 01518 void 01519 insert(iterator __position, size_type __n, const value_type& __x) 01520 { _M_fill_insert(__position, __n, __x); } 01521 01522 /** 01523 * @brief Inserts a range into the %deque. 01524 * @param __position An iterator into the %deque. 01525 * @param __first An input iterator. 01526 * @param __last An input iterator. 01527 * 01528 * This function will insert copies of the data in the range 01529 * [__first,__last) into the %deque before the location specified 01530 * by @a __position. This is known as <em>range insert</em>. 01531 */ 01532 #if __cplusplus >= 201103L 01533 template<typename _InputIterator, 01534 typename = std::_RequireInputIter<_InputIterator>> 01535 void 01536 insert(iterator __position, _InputIterator __first, 01537 _InputIterator __last) 01538 { _M_insert_dispatch(__position, __first, __last, __false_type()); } 01539 #else 01540 template<typename _InputIterator> 01541 void 01542 insert(iterator __position, _InputIterator __first, 01543 _InputIterator __last) 01544 { 01545 // Check whether it's an integral type. If so, it's not an iterator. 01546 typedef typename std::__is_integer<_InputIterator>::__type _Integral; 01547 _M_insert_dispatch(__position, __first, __last, _Integral()); 01548 } 01549 #endif 01550 01551 /** 01552 * @brief Remove element at given position. 01553 * @param __position Iterator pointing to element to be erased. 01554 * @return An iterator pointing to the next element (or end()). 01555 * 01556 * This function will erase the element at the given position and thus 01557 * shorten the %deque by one. 01558 * 01559 * The user is cautioned that 01560 * this function only erases the element, and that if the element is 01561 * itself a pointer, the pointed-to memory is not touched in any way. 01562 * Managing the pointer is the user's responsibility. 01563 */ 01564 iterator 01565 erase(iterator __position); 01566 01567 /** 01568 * @brief Remove a range of elements. 01569 * @param __first Iterator pointing to the first element to be erased. 01570 * @param __last Iterator pointing to one past the last element to be 01571 * erased. 01572 * @return An iterator pointing to the element pointed to by @a last 01573 * prior to erasing (or end()). 01574 * 01575 * This function will erase the elements in the range 01576 * [__first,__last) and shorten the %deque accordingly. 01577 * 01578 * The user is cautioned that 01579 * this function only erases the elements, and that if the elements 01580 * themselves are pointers, the pointed-to memory is not touched in any 01581 * way. Managing the pointer is the user's responsibility. 01582 */ 01583 iterator 01584 erase(iterator __first, iterator __last); 01585 01586 /** 01587 * @brief Swaps data with another %deque. 01588 * @param __x A %deque of the same element and allocator types. 01589 * 01590 * This exchanges the elements between two deques in constant time. 01591 * (Four pointers, so it should be quite fast.) 01592 * Note that the global std::swap() function is specialized such that 01593 * std::swap(d1,d2) will feed to this function. 01594 */ 01595 void 01596 swap(deque& __x) 01597 { 01598 std::swap(this->_M_impl._M_start, __x._M_impl._M_start); 01599 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); 01600 std::swap(this->_M_impl._M_map, __x._M_impl._M_map); 01601 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); 01602 01603 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01604 // 431. Swapping containers with unequal allocators. 01605 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(), 01606 __x._M_get_Tp_allocator()); 01607 } 01608 01609 /** 01610 * Erases all the elements. Note that this function only erases the 01611 * elements, and that if the elements themselves are pointers, the 01612 * pointed-to memory is not touched in any way. Managing the pointer is 01613 * the user's responsibility. 01614 */ 01615 void 01616 clear() _GLIBCXX_NOEXCEPT 01617 { _M_erase_at_end(begin()); } 01618 01619 protected: 01620 // Internal constructor functions follow. 01621 01622 // called by the range constructor to implement [23.1.1]/9 01623 01624 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01625 // 438. Ambiguity in the "do the right thing" clause 01626 template<typename _Integer> 01627 void 01628 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) 01629 { 01630 _M_initialize_map(static_cast<size_type>(__n)); 01631 _M_fill_initialize(__x); 01632 } 01633 01634 // called by the range constructor to implement [23.1.1]/9 01635 template<typename _InputIterator> 01636 void 01637 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, 01638 __false_type) 01639 { 01640 typedef typename std::iterator_traits<_InputIterator>:: 01641 iterator_category _IterCategory; 01642 _M_range_initialize(__first, __last, _IterCategory()); 01643 } 01644 01645 // called by the second initialize_dispatch above 01646 //@{ 01647 /** 01648 * @brief Fills the deque with whatever is in [first,last). 01649 * @param __first An input iterator. 01650 * @param __last An input iterator. 01651 * @return Nothing. 01652 * 01653 * If the iterators are actually forward iterators (or better), then the 01654 * memory layout can be done all at once. Else we move forward using 01655 * push_back on each value from the iterator. 01656 */ 01657 template<typename _InputIterator> 01658 void 01659 _M_range_initialize(_InputIterator __first, _InputIterator __last, 01660 std::input_iterator_tag); 01661 01662 // called by the second initialize_dispatch above 01663 template<typename _ForwardIterator> 01664 void 01665 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, 01666 std::forward_iterator_tag); 01667 //@} 01668 01669 /** 01670 * @brief Fills the %deque with copies of value. 01671 * @param __value Initial value. 01672 * @return Nothing. 01673 * @pre _M_start and _M_finish have already been initialized, 01674 * but none of the %deque's elements have yet been constructed. 01675 * 01676 * This function is called only when the user provides an explicit size 01677 * (with or without an explicit exemplar value). 01678 */ 01679 void 01680 _M_fill_initialize(const value_type& __value); 01681 01682 #if __cplusplus >= 201103L 01683 // called by deque(n). 01684 void 01685 _M_default_initialize(); 01686 #endif 01687 01688 // Internal assign functions follow. The *_aux functions do the actual 01689 // assignment work for the range versions. 01690 01691 // called by the range assign to implement [23.1.1]/9 01692 01693 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01694 // 438. Ambiguity in the "do the right thing" clause 01695 template<typename _Integer> 01696 void 01697 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) 01698 { _M_fill_assign(__n, __val); } 01699 01700 // called by the range assign to implement [23.1.1]/9 01701 template<typename _InputIterator> 01702 void 01703 _M_assign_dispatch(_InputIterator __first, _InputIterator __last, 01704 __false_type) 01705 { 01706 typedef typename std::iterator_traits<_InputIterator>:: 01707 iterator_category _IterCategory; 01708 _M_assign_aux(__first, __last, _IterCategory()); 01709 } 01710 01711 // called by the second assign_dispatch above 01712 template<typename _InputIterator> 01713 void 01714 _M_assign_aux(_InputIterator __first, _InputIterator __last, 01715 std::input_iterator_tag); 01716 01717 // called by the second assign_dispatch above 01718 template<typename _ForwardIterator> 01719 void 01720 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, 01721 std::forward_iterator_tag) 01722 { 01723 const size_type __len = std::distance(__first, __last); 01724 if (__len > size()) 01725 { 01726 _ForwardIterator __mid = __first; 01727 std::advance(__mid, size()); 01728 std::copy(__first, __mid, begin()); 01729 insert(end(), __mid, __last); 01730 } 01731 else 01732 _M_erase_at_end(std::copy(__first, __last, begin())); 01733 } 01734 01735 // Called by assign(n,t), and the range assign when it turns out 01736 // to be the same thing. 01737 void 01738 _M_fill_assign(size_type __n, const value_type& __val) 01739 { 01740 if (__n > size()) 01741 { 01742 std::fill(begin(), end(), __val); 01743 insert(end(), __n - size(), __val); 01744 } 01745 else 01746 { 01747 _M_erase_at_end(begin() + difference_type(__n)); 01748 std::fill(begin(), end(), __val); 01749 } 01750 } 01751 01752 //@{ 01753 /// Helper functions for push_* and pop_*. 01754 #if __cplusplus < 201103L 01755 void _M_push_back_aux(const value_type&); 01756 01757 void _M_push_front_aux(const value_type&); 01758 #else 01759 template<typename... _Args> 01760 void _M_push_back_aux(_Args&&... __args); 01761 01762 template<typename... _Args> 01763 void _M_push_front_aux(_Args&&... __args); 01764 #endif 01765 01766 void _M_pop_back_aux(); 01767 01768 void _M_pop_front_aux(); 01769 //@} 01770 01771 // Internal insert functions follow. The *_aux functions do the actual 01772 // insertion work when all shortcuts fail. 01773 01774 // called by the range insert to implement [23.1.1]/9 01775 01776 // _GLIBCXX_RESOLVE_LIB_DEFECTS 01777 // 438. Ambiguity in the "do the right thing" clause 01778 template<typename _Integer> 01779 void 01780 _M_insert_dispatch(iterator __pos, 01781 _Integer __n, _Integer __x, __true_type) 01782 { _M_fill_insert(__pos, __n, __x); } 01783 01784 // called by the range insert to implement [23.1.1]/9 01785 template<typename _InputIterator> 01786 void 01787 _M_insert_dispatch(iterator __pos, 01788 _InputIterator __first, _InputIterator __last, 01789 __false_type) 01790 { 01791 typedef typename std::iterator_traits<_InputIterator>:: 01792 iterator_category _IterCategory; 01793 _M_range_insert_aux(__pos, __first, __last, _IterCategory()); 01794 } 01795 01796 // called by the second insert_dispatch above 01797 template<typename _InputIterator> 01798 void 01799 _M_range_insert_aux(iterator __pos, _InputIterator __first, 01800 _InputIterator __last, std::input_iterator_tag); 01801 01802 // called by the second insert_dispatch above 01803 template<typename _ForwardIterator> 01804 void 01805 _M_range_insert_aux(iterator __pos, _ForwardIterator __first, 01806 _ForwardIterator __last, std::forward_iterator_tag); 01807 01808 // Called by insert(p,n,x), and the range insert when it turns out to be 01809 // the same thing. Can use fill functions in optimal situations, 01810 // otherwise passes off to insert_aux(p,n,x). 01811 void 01812 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); 01813 01814 // called by insert(p,x) 01815 #if __cplusplus < 201103L 01816 iterator 01817 _M_insert_aux(iterator __pos, const value_type& __x); 01818 #else 01819 template<typename... _Args> 01820 iterator 01821 _M_insert_aux(iterator __pos, _Args&&... __args); 01822 #endif 01823 01824 // called by insert(p,n,x) via fill_insert 01825 void 01826 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); 01827 01828 // called by range_insert_aux for forward iterators 01829 template<typename _ForwardIterator> 01830 void 01831 _M_insert_aux(iterator __pos, 01832 _ForwardIterator __first, _ForwardIterator __last, 01833 size_type __n); 01834 01835 01836 // Internal erase functions follow. 01837 01838 void 01839 _M_destroy_data_aux(iterator __first, iterator __last); 01840 01841 // Called by ~deque(). 01842 // NB: Doesn't deallocate the nodes. 01843 template<typename _Alloc1> 01844 void 01845 _M_destroy_data(iterator __first, iterator __last, const _Alloc1&) 01846 { _M_destroy_data_aux(__first, __last); } 01847 01848 void 01849 _M_destroy_data(iterator __first, iterator __last, 01850 const std::allocator<_Tp>&) 01851 { 01852 if (!__has_trivial_destructor(value_type)) 01853 _M_destroy_data_aux(__first, __last); 01854 } 01855 01856 // Called by erase(q1, q2). 01857 void 01858 _M_erase_at_begin(iterator __pos) 01859 { 01860 _M_destroy_data(begin(), __pos, _M_get_Tp_allocator()); 01861 _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node); 01862 this->_M_impl._M_start = __pos; 01863 } 01864 01865 // Called by erase(q1, q2), resize(), clear(), _M_assign_aux, 01866 // _M_fill_assign, operator=. 01867 void 01868 _M_erase_at_end(iterator __pos) 01869 { 01870 _M_destroy_data(__pos, end(), _M_get_Tp_allocator()); 01871 _M_destroy_nodes(__pos._M_node + 1, 01872 this->_M_impl._M_finish._M_node + 1); 01873 this->_M_impl._M_finish = __pos; 01874 } 01875 01876 #if __cplusplus >= 201103L 01877 // Called by resize(sz). 01878 void 01879 _M_default_append(size_type __n); 01880 01881 bool 01882 _M_shrink_to_fit(); 01883 #endif 01884 01885 //@{ 01886 /// Memory-handling helpers for the previous internal insert functions. 01887 iterator 01888 _M_reserve_elements_at_front(size_type __n) 01889 { 01890 const size_type __vacancies = this->_M_impl._M_start._M_cur 01891 - this->_M_impl._M_start._M_first; 01892 if (__n > __vacancies) 01893 _M_new_elements_at_front(__n - __vacancies); 01894 return this->_M_impl._M_start - difference_type(__n); 01895 } 01896 01897 iterator 01898 _M_reserve_elements_at_back(size_type __n) 01899 { 01900 const size_type __vacancies = (this->_M_impl._M_finish._M_last 01901 - this->_M_impl._M_finish._M_cur) - 1; 01902 if (__n > __vacancies) 01903 _M_new_elements_at_back(__n - __vacancies); 01904 return this->_M_impl._M_finish + difference_type(__n); 01905 } 01906 01907 void 01908 _M_new_elements_at_front(size_type __new_elements); 01909 01910 void 01911 _M_new_elements_at_back(size_type __new_elements); 01912 //@} 01913 01914 01915 //@{ 01916 /** 01917 * @brief Memory-handling helpers for the major %map. 01918 * 01919 * Makes sure the _M_map has space for new nodes. Does not 01920 * actually add the nodes. Can invalidate _M_map pointers. 01921 * (And consequently, %deque iterators.) 01922 */ 01923 void 01924 _M_reserve_map_at_back(size_type __nodes_to_add = 1) 01925 { 01926 if (__nodes_to_add + 1 > this->_M_impl._M_map_size 01927 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map)) 01928 _M_reallocate_map(__nodes_to_add, false); 01929 } 01930 01931 void 01932 _M_reserve_map_at_front(size_type __nodes_to_add = 1) 01933 { 01934 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node 01935 - this->_M_impl._M_map)) 01936 _M_reallocate_map(__nodes_to_add, true); 01937 } 01938 01939 void 01940 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); 01941 //@} 01942 }; 01943 01944 01945 /** 01946 * @brief Deque equality comparison. 01947 * @param __x A %deque. 01948 * @param __y A %deque of the same type as @a __x. 01949 * @return True iff the size and elements of the deques are equal. 01950 * 01951 * This is an equivalence relation. It is linear in the size of the 01952 * deques. Deques are considered equivalent if their sizes are equal, 01953 * and if corresponding elements compare equal. 01954 */ 01955 template<typename _Tp, typename _Alloc> 01956 inline bool 01957 operator==(const deque<_Tp, _Alloc>& __x, 01958 const deque<_Tp, _Alloc>& __y) 01959 { return __x.size() == __y.size() 01960 && std::equal(__x.begin(), __x.end(), __y.begin()); } 01961 01962 /** 01963 * @brief Deque ordering relation. 01964 * @param __x A %deque. 01965 * @param __y A %deque of the same type as @a __x. 01966 * @return True iff @a x is lexicographically less than @a __y. 01967 * 01968 * This is a total ordering relation. It is linear in the size of the 01969 * deques. The elements must be comparable with @c <. 01970 * 01971 * See std::lexicographical_compare() for how the determination is made. 01972 */ 01973 template<typename _Tp, typename _Alloc> 01974 inline bool 01975 operator<(const deque<_Tp, _Alloc>& __x, 01976 const deque<_Tp, _Alloc>& __y) 01977 { return std::lexicographical_compare(__x.begin(), __x.end(), 01978 __y.begin(), __y.end()); } 01979 01980 /// Based on operator== 01981 template<typename _Tp, typename _Alloc> 01982 inline bool 01983 operator!=(const deque<_Tp, _Alloc>& __x, 01984 const deque<_Tp, _Alloc>& __y) 01985 { return !(__x == __y); } 01986 01987 /// Based on operator< 01988 template<typename _Tp, typename _Alloc> 01989 inline bool 01990 operator>(const deque<_Tp, _Alloc>& __x, 01991 const deque<_Tp, _Alloc>& __y) 01992 { return __y < __x; } 01993 01994 /// Based on operator< 01995 template<typename _Tp, typename _Alloc> 01996 inline bool 01997 operator<=(const deque<_Tp, _Alloc>& __x, 01998 const deque<_Tp, _Alloc>& __y) 01999 { return !(__y < __x); } 02000 02001 /// Based on operator< 02002 template<typename _Tp, typename _Alloc> 02003 inline bool 02004 operator>=(const deque<_Tp, _Alloc>& __x, 02005 const deque<_Tp, _Alloc>& __y) 02006 { return !(__x < __y); } 02007 02008 /// See std::deque::swap(). 02009 template<typename _Tp, typename _Alloc> 02010 inline void 02011 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) 02012 { __x.swap(__y); } 02013 02014 #undef _GLIBCXX_DEQUE_BUF_SIZE 02015 02016 _GLIBCXX_END_NAMESPACE_CONTAINER 02017 } // namespace std 02018 02019 #endif /* _STL_DEQUE_H */