libstdc++
|
00001 // Map implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2013 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1996,1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_map.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{map} 00054 */ 00055 00056 #ifndef _STL_MAP_H 00057 #define _STL_MAP_H 1 00058 00059 #include <bits/functexcept.h> 00060 #include <bits/concept_check.h> 00061 #if __cplusplus >= 201103L 00062 #include <initializer_list> 00063 #include <tuple> 00064 #endif 00065 00066 namespace std _GLIBCXX_VISIBILITY(default) 00067 { 00068 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00069 00070 /** 00071 * @brief A standard container made up of (key,value) pairs, which can be 00072 * retrieved based on a key, in logarithmic time. 00073 * 00074 * @ingroup associative_containers 00075 * 00076 * @tparam _Key Type of key objects. 00077 * @tparam _Tp Type of mapped objects. 00078 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 00079 * @tparam _Alloc Allocator type, defaults to 00080 * allocator<pair<const _Key, _Tp>. 00081 * 00082 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00083 * <a href="tables.html#66">reversible container</a>, and an 00084 * <a href="tables.html#69">associative container</a> (using unique keys). 00085 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 00086 * value_type is std::pair<const Key,T>. 00087 * 00088 * Maps support bidirectional iterators. 00089 * 00090 * The private tree data is declared exactly the same way for map and 00091 * multimap; the distinction is made entirely in how the tree functions are 00092 * called (*_unique versus *_equal, same as the standard). 00093 */ 00094 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>, 00095 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00096 class map 00097 { 00098 public: 00099 typedef _Key key_type; 00100 typedef _Tp mapped_type; 00101 typedef std::pair<const _Key, _Tp> value_type; 00102 typedef _Compare key_compare; 00103 typedef _Alloc allocator_type; 00104 00105 private: 00106 // concept requirements 00107 typedef typename _Alloc::value_type _Alloc_value_type; 00108 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00109 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00110 _BinaryFunctionConcept) 00111 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00112 00113 public: 00114 class value_compare 00115 : public std::binary_function<value_type, value_type, bool> 00116 { 00117 friend class map<_Key, _Tp, _Compare, _Alloc>; 00118 protected: 00119 _Compare comp; 00120 00121 value_compare(_Compare __c) 00122 : comp(__c) { } 00123 00124 public: 00125 bool operator()(const value_type& __x, const value_type& __y) const 00126 { return comp(__x.first, __y.first); } 00127 }; 00128 00129 private: 00130 /// This turns a red-black tree into a [multi]map. 00131 typedef typename _Alloc::template rebind<value_type>::other 00132 _Pair_alloc_type; 00133 00134 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00135 key_compare, _Pair_alloc_type> _Rep_type; 00136 00137 /// The actual tree structure. 00138 _Rep_type _M_t; 00139 00140 public: 00141 // many of these are specified differently in ISO, but the following are 00142 // "functionally equivalent" 00143 typedef typename _Pair_alloc_type::pointer pointer; 00144 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00145 typedef typename _Pair_alloc_type::reference reference; 00146 typedef typename _Pair_alloc_type::const_reference const_reference; 00147 typedef typename _Rep_type::iterator iterator; 00148 typedef typename _Rep_type::const_iterator const_iterator; 00149 typedef typename _Rep_type::size_type size_type; 00150 typedef typename _Rep_type::difference_type difference_type; 00151 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00152 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00153 00154 // [23.3.1.1] construct/copy/destroy 00155 // (get_allocator() is normally listed in this section, but seems to have 00156 // been accidentally omitted in the printed standard) 00157 /** 00158 * @brief Default constructor creates no elements. 00159 */ 00160 map() 00161 : _M_t() { } 00162 00163 /** 00164 * @brief Creates a %map with no elements. 00165 * @param __comp A comparison object. 00166 * @param __a An allocator object. 00167 */ 00168 explicit 00169 map(const _Compare& __comp, 00170 const allocator_type& __a = allocator_type()) 00171 : _M_t(__comp, _Pair_alloc_type(__a)) { } 00172 00173 /** 00174 * @brief %Map copy constructor. 00175 * @param __x A %map of identical element and allocator types. 00176 * 00177 * The newly-created %map uses a copy of the allocation object 00178 * used by @a __x. 00179 */ 00180 map(const map& __x) 00181 : _M_t(__x._M_t) { } 00182 00183 #if __cplusplus >= 201103L 00184 /** 00185 * @brief %Map move constructor. 00186 * @param __x A %map of identical element and allocator types. 00187 * 00188 * The newly-created %map contains the exact contents of @a __x. 00189 * The contents of @a __x are a valid, but unspecified %map. 00190 */ 00191 map(map&& __x) 00192 noexcept(is_nothrow_copy_constructible<_Compare>::value) 00193 : _M_t(std::move(__x._M_t)) { } 00194 00195 /** 00196 * @brief Builds a %map from an initializer_list. 00197 * @param __l An initializer_list. 00198 * @param __comp A comparison object. 00199 * @param __a An allocator object. 00200 * 00201 * Create a %map consisting of copies of the elements in the 00202 * initializer_list @a __l. 00203 * This is linear in N if the range is already sorted, and NlogN 00204 * otherwise (where N is @a __l.size()). 00205 */ 00206 map(initializer_list<value_type> __l, 00207 const _Compare& __comp = _Compare(), 00208 const allocator_type& __a = allocator_type()) 00209 : _M_t(__comp, _Pair_alloc_type(__a)) 00210 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00211 #endif 00212 00213 /** 00214 * @brief Builds a %map from a range. 00215 * @param __first An input iterator. 00216 * @param __last An input iterator. 00217 * 00218 * Create a %map consisting of copies of the elements from 00219 * [__first,__last). This is linear in N if the range is 00220 * already sorted, and NlogN otherwise (where N is 00221 * distance(__first,__last)). 00222 */ 00223 template<typename _InputIterator> 00224 map(_InputIterator __first, _InputIterator __last) 00225 : _M_t() 00226 { _M_t._M_insert_unique(__first, __last); } 00227 00228 /** 00229 * @brief Builds a %map from a range. 00230 * @param __first An input iterator. 00231 * @param __last An input iterator. 00232 * @param __comp A comparison functor. 00233 * @param __a An allocator object. 00234 * 00235 * Create a %map consisting of copies of the elements from 00236 * [__first,__last). This is linear in N if the range is 00237 * already sorted, and NlogN otherwise (where N is 00238 * distance(__first,__last)). 00239 */ 00240 template<typename _InputIterator> 00241 map(_InputIterator __first, _InputIterator __last, 00242 const _Compare& __comp, 00243 const allocator_type& __a = allocator_type()) 00244 : _M_t(__comp, _Pair_alloc_type(__a)) 00245 { _M_t._M_insert_unique(__first, __last); } 00246 00247 // FIXME There is no dtor declared, but we should have something 00248 // generated by Doxygen. I don't know what tags to add to this 00249 // paragraph to make that happen: 00250 /** 00251 * The dtor only erases the elements, and note that if the elements 00252 * themselves are pointers, the pointed-to memory is not touched in any 00253 * way. Managing the pointer is the user's responsibility. 00254 */ 00255 00256 /** 00257 * @brief %Map assignment operator. 00258 * @param __x A %map of identical element and allocator types. 00259 * 00260 * All the elements of @a __x are copied, but unlike the copy 00261 * constructor, the allocator object is not copied. 00262 */ 00263 map& 00264 operator=(const map& __x) 00265 { 00266 _M_t = __x._M_t; 00267 return *this; 00268 } 00269 00270 #if __cplusplus >= 201103L 00271 /** 00272 * @brief %Map move assignment operator. 00273 * @param __x A %map of identical element and allocator types. 00274 * 00275 * The contents of @a __x are moved into this map (without copying). 00276 * @a __x is a valid, but unspecified %map. 00277 */ 00278 map& 00279 operator=(map&& __x) 00280 { 00281 // NB: DR 1204. 00282 // NB: DR 675. 00283 this->clear(); 00284 this->swap(__x); 00285 return *this; 00286 } 00287 00288 /** 00289 * @brief %Map list assignment operator. 00290 * @param __l An initializer_list. 00291 * 00292 * This function fills a %map with copies of the elements in the 00293 * initializer list @a __l. 00294 * 00295 * Note that the assignment completely changes the %map and 00296 * that the resulting %map's size is the same as the number 00297 * of elements assigned. Old data may be lost. 00298 */ 00299 map& 00300 operator=(initializer_list<value_type> __l) 00301 { 00302 this->clear(); 00303 this->insert(__l.begin(), __l.end()); 00304 return *this; 00305 } 00306 #endif 00307 00308 /// Get a copy of the memory allocation object. 00309 allocator_type 00310 get_allocator() const _GLIBCXX_NOEXCEPT 00311 { return allocator_type(_M_t.get_allocator()); } 00312 00313 // iterators 00314 /** 00315 * Returns a read/write iterator that points to the first pair in the 00316 * %map. 00317 * Iteration is done in ascending order according to the keys. 00318 */ 00319 iterator 00320 begin() _GLIBCXX_NOEXCEPT 00321 { return _M_t.begin(); } 00322 00323 /** 00324 * Returns a read-only (constant) iterator that points to the first pair 00325 * in the %map. Iteration is done in ascending order according to the 00326 * keys. 00327 */ 00328 const_iterator 00329 begin() const _GLIBCXX_NOEXCEPT 00330 { return _M_t.begin(); } 00331 00332 /** 00333 * Returns a read/write iterator that points one past the last 00334 * pair in the %map. Iteration is done in ascending order 00335 * according to the keys. 00336 */ 00337 iterator 00338 end() _GLIBCXX_NOEXCEPT 00339 { return _M_t.end(); } 00340 00341 /** 00342 * Returns a read-only (constant) iterator that points one past the last 00343 * pair in the %map. Iteration is done in ascending order according to 00344 * the keys. 00345 */ 00346 const_iterator 00347 end() const _GLIBCXX_NOEXCEPT 00348 { return _M_t.end(); } 00349 00350 /** 00351 * Returns a read/write reverse iterator that points to the last pair in 00352 * the %map. Iteration is done in descending order according to the 00353 * keys. 00354 */ 00355 reverse_iterator 00356 rbegin() _GLIBCXX_NOEXCEPT 00357 { return _M_t.rbegin(); } 00358 00359 /** 00360 * Returns a read-only (constant) reverse iterator that points to the 00361 * last pair in the %map. Iteration is done in descending order 00362 * according to the keys. 00363 */ 00364 const_reverse_iterator 00365 rbegin() const _GLIBCXX_NOEXCEPT 00366 { return _M_t.rbegin(); } 00367 00368 /** 00369 * Returns a read/write reverse iterator that points to one before the 00370 * first pair in the %map. Iteration is done in descending order 00371 * according to the keys. 00372 */ 00373 reverse_iterator 00374 rend() _GLIBCXX_NOEXCEPT 00375 { return _M_t.rend(); } 00376 00377 /** 00378 * Returns a read-only (constant) reverse iterator that points to one 00379 * before the first pair in the %map. Iteration is done in descending 00380 * order according to the keys. 00381 */ 00382 const_reverse_iterator 00383 rend() const _GLIBCXX_NOEXCEPT 00384 { return _M_t.rend(); } 00385 00386 #if __cplusplus >= 201103L 00387 /** 00388 * Returns a read-only (constant) iterator that points to the first pair 00389 * in the %map. Iteration is done in ascending order according to the 00390 * keys. 00391 */ 00392 const_iterator 00393 cbegin() const noexcept 00394 { return _M_t.begin(); } 00395 00396 /** 00397 * Returns a read-only (constant) iterator that points one past the last 00398 * pair in the %map. Iteration is done in ascending order according to 00399 * the keys. 00400 */ 00401 const_iterator 00402 cend() const noexcept 00403 { return _M_t.end(); } 00404 00405 /** 00406 * Returns a read-only (constant) reverse iterator that points to the 00407 * last pair in the %map. Iteration is done in descending order 00408 * according to the keys. 00409 */ 00410 const_reverse_iterator 00411 crbegin() const noexcept 00412 { return _M_t.rbegin(); } 00413 00414 /** 00415 * Returns a read-only (constant) reverse iterator that points to one 00416 * before the first pair in the %map. Iteration is done in descending 00417 * order according to the keys. 00418 */ 00419 const_reverse_iterator 00420 crend() const noexcept 00421 { return _M_t.rend(); } 00422 #endif 00423 00424 // capacity 00425 /** Returns true if the %map is empty. (Thus begin() would equal 00426 * end().) 00427 */ 00428 bool 00429 empty() const _GLIBCXX_NOEXCEPT 00430 { return _M_t.empty(); } 00431 00432 /** Returns the size of the %map. */ 00433 size_type 00434 size() const _GLIBCXX_NOEXCEPT 00435 { return _M_t.size(); } 00436 00437 /** Returns the maximum size of the %map. */ 00438 size_type 00439 max_size() const _GLIBCXX_NOEXCEPT 00440 { return _M_t.max_size(); } 00441 00442 // [23.3.1.2] element access 00443 /** 00444 * @brief Subscript ( @c [] ) access to %map data. 00445 * @param __k The key for which data should be retrieved. 00446 * @return A reference to the data of the (key,data) %pair. 00447 * 00448 * Allows for easy lookup with the subscript ( @c [] ) 00449 * operator. Returns data associated with the key specified in 00450 * subscript. If the key does not exist, a pair with that key 00451 * is created using default values, which is then returned. 00452 * 00453 * Lookup requires logarithmic time. 00454 */ 00455 mapped_type& 00456 operator[](const key_type& __k) 00457 { 00458 // concept requirements 00459 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00460 00461 iterator __i = lower_bound(__k); 00462 // __i->first is greater than or equivalent to __k. 00463 if (__i == end() || key_comp()(__k, (*__i).first)) 00464 #if __cplusplus >= 201103L 00465 __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct, 00466 std::tuple<const key_type&>(__k), 00467 std::tuple<>()); 00468 #else 00469 __i = insert(__i, value_type(__k, mapped_type())); 00470 #endif 00471 return (*__i).second; 00472 } 00473 00474 #if __cplusplus >= 201103L 00475 mapped_type& 00476 operator[](key_type&& __k) 00477 { 00478 // concept requirements 00479 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00480 00481 iterator __i = lower_bound(__k); 00482 // __i->first is greater than or equivalent to __k. 00483 if (__i == end() || key_comp()(__k, (*__i).first)) 00484 __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct, 00485 std::forward_as_tuple(std::move(__k)), 00486 std::tuple<>()); 00487 return (*__i).second; 00488 } 00489 #endif 00490 00491 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00492 // DR 464. Suggestion for new member functions in standard containers. 00493 /** 00494 * @brief Access to %map data. 00495 * @param __k The key for which data should be retrieved. 00496 * @return A reference to the data whose key is equivalent to @a __k, if 00497 * such a data is present in the %map. 00498 * @throw std::out_of_range If no such data is present. 00499 */ 00500 mapped_type& 00501 at(const key_type& __k) 00502 { 00503 iterator __i = lower_bound(__k); 00504 if (__i == end() || key_comp()(__k, (*__i).first)) 00505 __throw_out_of_range(__N("map::at")); 00506 return (*__i).second; 00507 } 00508 00509 const mapped_type& 00510 at(const key_type& __k) const 00511 { 00512 const_iterator __i = lower_bound(__k); 00513 if (__i == end() || key_comp()(__k, (*__i).first)) 00514 __throw_out_of_range(__N("map::at")); 00515 return (*__i).second; 00516 } 00517 00518 // modifiers 00519 #if __cplusplus >= 201103L 00520 /** 00521 * @brief Attempts to build and insert a std::pair into the %map. 00522 * 00523 * @param __args Arguments used to generate a new pair instance (see 00524 * std::piecewise_contruct for passing arguments to each 00525 * part of the pair constructor). 00526 * 00527 * @return A pair, of which the first element is an iterator that points 00528 * to the possibly inserted pair, and the second is a bool that 00529 * is true if the pair was actually inserted. 00530 * 00531 * This function attempts to build and insert a (key, value) %pair into 00532 * the %map. 00533 * A %map relies on unique keys and thus a %pair is only inserted if its 00534 * first element (the key) is not already present in the %map. 00535 * 00536 * Insertion requires logarithmic time. 00537 */ 00538 template<typename... _Args> 00539 std::pair<iterator, bool> 00540 emplace(_Args&&... __args) 00541 { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); } 00542 00543 /** 00544 * @brief Attempts to build and insert a std::pair into the %map. 00545 * 00546 * @param __pos An iterator that serves as a hint as to where the pair 00547 * should be inserted. 00548 * @param __args Arguments used to generate a new pair instance (see 00549 * std::piecewise_contruct for passing arguments to each 00550 * part of the pair constructor). 00551 * @return An iterator that points to the element with key of the 00552 * std::pair built from @a __args (may or may not be that 00553 * std::pair). 00554 * 00555 * This function is not concerned about whether the insertion took place, 00556 * and thus does not return a boolean like the single-argument emplace() 00557 * does. 00558 * Note that the first parameter is only a hint and can potentially 00559 * improve the performance of the insertion process. A bad hint would 00560 * cause no gains in efficiency. 00561 * 00562 * See 00563 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00564 * for more on @a hinting. 00565 * 00566 * Insertion requires logarithmic time (if the hint is not taken). 00567 */ 00568 template<typename... _Args> 00569 iterator 00570 emplace_hint(const_iterator __pos, _Args&&... __args) 00571 { 00572 return _M_t._M_emplace_hint_unique(__pos, 00573 std::forward<_Args>(__args)...); 00574 } 00575 #endif 00576 00577 /** 00578 * @brief Attempts to insert a std::pair into the %map. 00579 00580 * @param __x Pair to be inserted (see std::make_pair for easy 00581 * creation of pairs). 00582 * 00583 * @return A pair, of which the first element is an iterator that 00584 * points to the possibly inserted pair, and the second is 00585 * a bool that is true if the pair was actually inserted. 00586 * 00587 * This function attempts to insert a (key, value) %pair into the %map. 00588 * A %map relies on unique keys and thus a %pair is only inserted if its 00589 * first element (the key) is not already present in the %map. 00590 * 00591 * Insertion requires logarithmic time. 00592 */ 00593 std::pair<iterator, bool> 00594 insert(const value_type& __x) 00595 { return _M_t._M_insert_unique(__x); } 00596 00597 #if __cplusplus >= 201103L 00598 template<typename _Pair, typename = typename 00599 std::enable_if<std::is_constructible<value_type, 00600 _Pair&&>::value>::type> 00601 std::pair<iterator, bool> 00602 insert(_Pair&& __x) 00603 { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); } 00604 #endif 00605 00606 #if __cplusplus >= 201103L 00607 /** 00608 * @brief Attempts to insert a list of std::pairs into the %map. 00609 * @param __list A std::initializer_list<value_type> of pairs to be 00610 * inserted. 00611 * 00612 * Complexity similar to that of the range constructor. 00613 */ 00614 void 00615 insert(std::initializer_list<value_type> __list) 00616 { insert(__list.begin(), __list.end()); } 00617 #endif 00618 00619 /** 00620 * @brief Attempts to insert a std::pair into the %map. 00621 * @param __position An iterator that serves as a hint as to where the 00622 * pair should be inserted. 00623 * @param __x Pair to be inserted (see std::make_pair for easy creation 00624 * of pairs). 00625 * @return An iterator that points to the element with key of 00626 * @a __x (may or may not be the %pair passed in). 00627 * 00628 00629 * This function is not concerned about whether the insertion 00630 * took place, and thus does not return a boolean like the 00631 * single-argument insert() does. Note that the first 00632 * parameter is only a hint and can potentially improve the 00633 * performance of the insertion process. A bad hint would 00634 * cause no gains in efficiency. 00635 * 00636 * See 00637 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00638 * for more on @a hinting. 00639 * 00640 * Insertion requires logarithmic time (if the hint is not taken). 00641 */ 00642 iterator 00643 #if __cplusplus >= 201103L 00644 insert(const_iterator __position, const value_type& __x) 00645 #else 00646 insert(iterator __position, const value_type& __x) 00647 #endif 00648 { return _M_t._M_insert_unique_(__position, __x); } 00649 00650 #if __cplusplus >= 201103L 00651 template<typename _Pair, typename = typename 00652 std::enable_if<std::is_constructible<value_type, 00653 _Pair&&>::value>::type> 00654 iterator 00655 insert(const_iterator __position, _Pair&& __x) 00656 { return _M_t._M_insert_unique_(__position, 00657 std::forward<_Pair>(__x)); } 00658 #endif 00659 00660 /** 00661 * @brief Template function that attempts to insert a range of elements. 00662 * @param __first Iterator pointing to the start of the range to be 00663 * inserted. 00664 * @param __last Iterator pointing to the end of the range. 00665 * 00666 * Complexity similar to that of the range constructor. 00667 */ 00668 template<typename _InputIterator> 00669 void 00670 insert(_InputIterator __first, _InputIterator __last) 00671 { _M_t._M_insert_unique(__first, __last); } 00672 00673 #if __cplusplus >= 201103L 00674 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00675 // DR 130. Associative erase should return an iterator. 00676 /** 00677 * @brief Erases an element from a %map. 00678 * @param __position An iterator pointing to the element to be erased. 00679 * @return An iterator pointing to the element immediately following 00680 * @a position prior to the element being erased. If no such 00681 * element exists, end() is returned. 00682 * 00683 * This function erases an element, pointed to by the given 00684 * iterator, from a %map. Note that this function only erases 00685 * the element, and that if the element is itself a pointer, 00686 * the pointed-to memory is not touched in any way. Managing 00687 * the pointer is the user's responsibility. 00688 */ 00689 iterator 00690 erase(const_iterator __position) 00691 { return _M_t.erase(__position); } 00692 00693 // LWG 2059 00694 _GLIBCXX_ABI_TAG_CXX11 00695 iterator 00696 erase(iterator __position) 00697 { return _M_t.erase(__position); } 00698 #else 00699 /** 00700 * @brief Erases an element from a %map. 00701 * @param __position An iterator pointing to the element to be erased. 00702 * 00703 * This function erases an element, pointed to by the given 00704 * iterator, from a %map. Note that this function only erases 00705 * the element, and that if the element is itself a pointer, 00706 * the pointed-to memory is not touched in any way. Managing 00707 * the pointer is the user's responsibility. 00708 */ 00709 void 00710 erase(iterator __position) 00711 { _M_t.erase(__position); } 00712 #endif 00713 00714 /** 00715 * @brief Erases elements according to the provided key. 00716 * @param __x Key of element to be erased. 00717 * @return The number of elements erased. 00718 * 00719 * This function erases all the elements located by the given key from 00720 * a %map. 00721 * Note that this function only erases the element, and that if 00722 * the element is itself a pointer, the pointed-to memory is not touched 00723 * in any way. Managing the pointer is the user's responsibility. 00724 */ 00725 size_type 00726 erase(const key_type& __x) 00727 { return _M_t.erase(__x); } 00728 00729 #if __cplusplus >= 201103L 00730 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00731 // DR 130. Associative erase should return an iterator. 00732 /** 00733 * @brief Erases a [first,last) range of elements from a %map. 00734 * @param __first Iterator pointing to the start of the range to be 00735 * erased. 00736 * @param __last Iterator pointing to the end of the range to 00737 * be erased. 00738 * @return The iterator @a __last. 00739 * 00740 * This function erases a sequence of elements from a %map. 00741 * Note that this function only erases the element, and that if 00742 * the element is itself a pointer, the pointed-to memory is not touched 00743 * in any way. Managing the pointer is the user's responsibility. 00744 */ 00745 iterator 00746 erase(const_iterator __first, const_iterator __last) 00747 { return _M_t.erase(__first, __last); } 00748 #else 00749 /** 00750 * @brief Erases a [__first,__last) range of elements from a %map. 00751 * @param __first Iterator pointing to the start of the range to be 00752 * erased. 00753 * @param __last Iterator pointing to the end of the range to 00754 * be erased. 00755 * 00756 * This function erases a sequence of elements from a %map. 00757 * Note that this function only erases the element, and that if 00758 * the element is itself a pointer, the pointed-to memory is not touched 00759 * in any way. Managing the pointer is the user's responsibility. 00760 */ 00761 void 00762 erase(iterator __first, iterator __last) 00763 { _M_t.erase(__first, __last); } 00764 #endif 00765 00766 /** 00767 * @brief Swaps data with another %map. 00768 * @param __x A %map of the same element and allocator types. 00769 * 00770 * This exchanges the elements between two maps in constant 00771 * time. (It is only swapping a pointer, an integer, and an 00772 * instance of the @c Compare type (which itself is often 00773 * stateless and empty), so it should be quite fast.) Note 00774 * that the global std::swap() function is specialized such 00775 * that std::swap(m1,m2) will feed to this function. 00776 */ 00777 void 00778 swap(map& __x) 00779 { _M_t.swap(__x._M_t); } 00780 00781 /** 00782 * Erases all elements in a %map. Note that this function only 00783 * erases the elements, and that if the elements themselves are 00784 * pointers, the pointed-to memory is not touched in any way. 00785 * Managing the pointer is the user's responsibility. 00786 */ 00787 void 00788 clear() _GLIBCXX_NOEXCEPT 00789 { _M_t.clear(); } 00790 00791 // observers 00792 /** 00793 * Returns the key comparison object out of which the %map was 00794 * constructed. 00795 */ 00796 key_compare 00797 key_comp() const 00798 { return _M_t.key_comp(); } 00799 00800 /** 00801 * Returns a value comparison object, built from the key comparison 00802 * object out of which the %map was constructed. 00803 */ 00804 value_compare 00805 value_comp() const 00806 { return value_compare(_M_t.key_comp()); } 00807 00808 // [23.3.1.3] map operations 00809 /** 00810 * @brief Tries to locate an element in a %map. 00811 * @param __x Key of (key, value) %pair to be located. 00812 * @return Iterator pointing to sought-after element, or end() if not 00813 * found. 00814 * 00815 * This function takes a key and tries to locate the element with which 00816 * the key matches. If successful the function returns an iterator 00817 * pointing to the sought after %pair. If unsuccessful it returns the 00818 * past-the-end ( @c end() ) iterator. 00819 */ 00820 iterator 00821 find(const key_type& __x) 00822 { return _M_t.find(__x); } 00823 00824 /** 00825 * @brief Tries to locate an element in a %map. 00826 * @param __x Key of (key, value) %pair to be located. 00827 * @return Read-only (constant) iterator pointing to sought-after 00828 * element, or end() if not found. 00829 * 00830 * This function takes a key and tries to locate the element with which 00831 * the key matches. If successful the function returns a constant 00832 * iterator pointing to the sought after %pair. If unsuccessful it 00833 * returns the past-the-end ( @c end() ) iterator. 00834 */ 00835 const_iterator 00836 find(const key_type& __x) const 00837 { return _M_t.find(__x); } 00838 00839 /** 00840 * @brief Finds the number of elements with given key. 00841 * @param __x Key of (key, value) pairs to be located. 00842 * @return Number of elements with specified key. 00843 * 00844 * This function only makes sense for multimaps; for map the result will 00845 * either be 0 (not present) or 1 (present). 00846 */ 00847 size_type 00848 count(const key_type& __x) const 00849 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00850 00851 /** 00852 * @brief Finds the beginning of a subsequence matching given key. 00853 * @param __x Key of (key, value) pair to be located. 00854 * @return Iterator pointing to first element equal to or greater 00855 * than key, or end(). 00856 * 00857 * This function returns the first element of a subsequence of elements 00858 * that matches the given key. If unsuccessful it returns an iterator 00859 * pointing to the first element that has a greater value than given key 00860 * or end() if no such element exists. 00861 */ 00862 iterator 00863 lower_bound(const key_type& __x) 00864 { return _M_t.lower_bound(__x); } 00865 00866 /** 00867 * @brief Finds the beginning of a subsequence matching given key. 00868 * @param __x Key of (key, value) pair to be located. 00869 * @return Read-only (constant) iterator pointing to first element 00870 * equal to or greater than key, or end(). 00871 * 00872 * This function returns the first element of a subsequence of elements 00873 * that matches the given key. If unsuccessful it returns an iterator 00874 * pointing to the first element that has a greater value than given key 00875 * or end() if no such element exists. 00876 */ 00877 const_iterator 00878 lower_bound(const key_type& __x) const 00879 { return _M_t.lower_bound(__x); } 00880 00881 /** 00882 * @brief Finds the end of a subsequence matching given key. 00883 * @param __x Key of (key, value) pair to be located. 00884 * @return Iterator pointing to the first element 00885 * greater than key, or end(). 00886 */ 00887 iterator 00888 upper_bound(const key_type& __x) 00889 { return _M_t.upper_bound(__x); } 00890 00891 /** 00892 * @brief Finds the end of a subsequence matching given key. 00893 * @param __x Key of (key, value) pair to be located. 00894 * @return Read-only (constant) iterator pointing to first iterator 00895 * greater than key, or end(). 00896 */ 00897 const_iterator 00898 upper_bound(const key_type& __x) const 00899 { return _M_t.upper_bound(__x); } 00900 00901 /** 00902 * @brief Finds a subsequence matching given key. 00903 * @param __x Key of (key, value) pairs to be located. 00904 * @return Pair of iterators that possibly points to the subsequence 00905 * matching given key. 00906 * 00907 * This function is equivalent to 00908 * @code 00909 * std::make_pair(c.lower_bound(val), 00910 * c.upper_bound(val)) 00911 * @endcode 00912 * (but is faster than making the calls separately). 00913 * 00914 * This function probably only makes sense for multimaps. 00915 */ 00916 std::pair<iterator, iterator> 00917 equal_range(const key_type& __x) 00918 { return _M_t.equal_range(__x); } 00919 00920 /** 00921 * @brief Finds a subsequence matching given key. 00922 * @param __x Key of (key, value) pairs to be located. 00923 * @return Pair of read-only (constant) iterators that possibly points 00924 * to the subsequence matching given key. 00925 * 00926 * This function is equivalent to 00927 * @code 00928 * std::make_pair(c.lower_bound(val), 00929 * c.upper_bound(val)) 00930 * @endcode 00931 * (but is faster than making the calls separately). 00932 * 00933 * This function probably only makes sense for multimaps. 00934 */ 00935 std::pair<const_iterator, const_iterator> 00936 equal_range(const key_type& __x) const 00937 { return _M_t.equal_range(__x); } 00938 00939 template<typename _K1, typename _T1, typename _C1, typename _A1> 00940 friend bool 00941 operator==(const map<_K1, _T1, _C1, _A1>&, 00942 const map<_K1, _T1, _C1, _A1>&); 00943 00944 template<typename _K1, typename _T1, typename _C1, typename _A1> 00945 friend bool 00946 operator<(const map<_K1, _T1, _C1, _A1>&, 00947 const map<_K1, _T1, _C1, _A1>&); 00948 }; 00949 00950 /** 00951 * @brief Map equality comparison. 00952 * @param __x A %map. 00953 * @param __y A %map of the same type as @a x. 00954 * @return True iff the size and elements of the maps are equal. 00955 * 00956 * This is an equivalence relation. It is linear in the size of the 00957 * maps. Maps are considered equivalent if their sizes are equal, 00958 * and if corresponding elements compare equal. 00959 */ 00960 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00961 inline bool 00962 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00963 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00964 { return __x._M_t == __y._M_t; } 00965 00966 /** 00967 * @brief Map ordering relation. 00968 * @param __x A %map. 00969 * @param __y A %map of the same type as @a x. 00970 * @return True iff @a x is lexicographically less than @a y. 00971 * 00972 * This is a total ordering relation. It is linear in the size of the 00973 * maps. The elements must be comparable with @c <. 00974 * 00975 * See std::lexicographical_compare() for how the determination is made. 00976 */ 00977 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00978 inline bool 00979 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00980 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00981 { return __x._M_t < __y._M_t; } 00982 00983 /// Based on operator== 00984 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00985 inline bool 00986 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00987 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00988 { return !(__x == __y); } 00989 00990 /// Based on operator< 00991 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00992 inline bool 00993 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x, 00994 const map<_Key, _Tp, _Compare, _Alloc>& __y) 00995 { return __y < __x; } 00996 00997 /// Based on operator< 00998 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00999 inline bool 01000 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01001 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01002 { return !(__y < __x); } 01003 01004 /// Based on operator< 01005 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01006 inline bool 01007 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01008 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01009 { return !(__x < __y); } 01010 01011 /// See std::map::swap(). 01012 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01013 inline void 01014 swap(map<_Key, _Tp, _Compare, _Alloc>& __x, 01015 map<_Key, _Tp, _Compare, _Alloc>& __y) 01016 { __x.swap(__y); } 01017 01018 _GLIBCXX_END_NAMESPACE_CONTAINER 01019 } // namespace std 01020 01021 #endif /* _STL_MAP_H */